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Abstract The current study uses effective connectivity
modeling to examine how individuals with traumatic brain
injury (TBI) learn a new task. We make use of recent
advancements in connectivity modeling (extended unified
structural equation modeling, euSEM) and a novel iterative
grouping procedure (Group Iterative Multiple Model Esti-
mation, GIMME) in order to examine network flexibility
after injury. The study enrolled 12 individuals sustaining
moderate and severe TBI to examine the influence of task
practice on connections between 8 network nodes (bilateral
prefrontal cortex, anterior cingulate, inferior parietal lobule,
and Crus I in the cerebellum). The data demonstrate alter-
ations in networks from pre to post practice and differences
in the models based upon distinct learning trajectories ob-
served within the TBI sample. For example, better learning
in the TBI sample was associated with diminished connec-
tivity within frontal systems and increased frontal to parietal
connectivity. These findings reveal the potential for using
connectivity modeling and the euSEM to examine dynamic
networks during task engagement and may ultimately be
informative regarding when networks are moving in and
out of periods of neural efficiency.
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Introduction

Traumatic brain injury (TBI) is the most common neurolog-
ical disorder in young adults, with an annual incidence of
1.7 million and societal costs including lost productivity
estimated at $60 billion (Centers for Disease Control and
Prevention, N.C.f.I.P.a.C.; Available from: http://
www.cdc.gov/traumaticbraininjury/). Unfortunately, there
remains much unknown about how neural systems adjust
to TBI and the factors associated with recovery. Over the
past decade there has been a dramatic increase in the use of
functional neuroimaging techniques such as blood oxygen
level dependent functional magnetic resonance imaging
(BOLD fMRI) to examine cognitive, sensory, and motor
dysfunction in neurologically impaired samples. To date,
fMRI has provided new avenues to study brain functioning
and unparalleled opportunities to examine brain disorders.

In the clinical neurosciences, fMRI methods have tradi-
tionally been used to document between-group differences
with focus on mean BOLD signal change between healthy
and clinical samples. While informative, these between-
group comparisons are often insensitive to individual differ-
ences in response to injury. This problem is particularly
important in neurological disorders that are notoriously het-
erogeneous, such as TBI; findings observable at the group
level likely reflect only gross brain responses and are un-
likely to be sensitive to injury-specific adjustments in neural
systems, making any inferences about the individual unfea-
sible. The goal of the current study is to demonstrate the use
of a novel connectivity method for documenting changes in
neural networks over time in the individual after TBI. We
aim to elicit short-term plasticity via repeated exposure to a

F. G. Hillary (*) : J. D. Medaglia
Department of Psychology, The Pennsylvania State University,
347 Moore Building,
University Park, PA 16802, USA
e-mail: fhillary@psu.edu

K. M. Gates : P. C. Molenaar
Human Development and Family Studies,
University Park, PA 16802, USA

F. G. Hillary :D. C. Good
Department of Neurology, Hershey Medical Center,
Hershey, PA, USA

Brain Imaging and Behavior
DOI 10.1007/s11682-012-9205-0

http://www.cdc.gov/traumaticbraininjury/
http://www.cdc.gov/traumaticbraininjury/


demanding cognitive task. We focus our analyses on within-
subject change in neural network responsivity by examining
network changes before and after task practice to observe
how a disrupted neural network accommodates a novel task.
By focusing on individual change using advanced brain
connectivity modeling, the objective is to move beyond
the common practice of documenting task-specific, regional
brain responses that differentiate clinical and healthy samples.
Instead we directly address the fundamental heterogeneity in
TBI by analyzing the subtle network shifts occurring in the
individual associated with performance change during task
acquisition.

Functional imaging and network change after TBI

One rapidly growing literature using functional imaging
methods to examine deficits after neurological compromise
has focused on information processing and working memo-
ry (WM). Working memory is the ability to maintain a small
amount of information “in mind” for online manipulation
and use (Baddeley and Della Sala 1996) and one of the most
widely studied areas of cognitive dysfunction in the clinical
fMRI literature. Deficits in WM and processing speed have
received extensive attention because they are at the founda-
tion of numerous other cognitive processes and deficit here
is nearly universal following neurological compromise
(Albantakis and Deco 2011; Army Individual Test Battery:
Manual of directions and scoring 1944; Cohen et al.
2000; Collette et al. 1999; Deluca et al. 2000; Demaree
et al. 1999; Friston 2009; Gates and Molenaar 2012; McDo-
well et al. 1997; Morris and Baddeley 1988; Smith et al.
2011). (Albantakis and Deco 2011; Army Individual Test
Battery: Manual of directions and scoring 1944; Cohen et
al. 2000; Collette et al. 1999; DeLuca et al. 2000; Demaree et
al. 1999; Friston 2009; Gates and Molenaar 2012; McDowell
et al. 1997; Morris and Baddeley 1988; Smith et al. 2011).

With few exceptions (see Sanchez-Carrion et al. 2008b),
there have been relatively consistent results in the WM
literature, with studies of moderate-severe TBI most com-
monly demonstrating increased involvement of parietal and
prefrontal cortex (PFC), and in particular right PFC (for
review see Hillary et al. 2006). However the meaning of
this neural recruitment remains uncertain (see Hillary 2008;
Turner and Levine 2008; Sanchez-Carrion et al. 2008a,b;
Hillary et al. 2006; Maruishi et al. 2007; Scheibel et al.
2007) because it is unclear that this increased resource use
has anything specifically to do with TBI given that similar
PFC recruitment is commonly observed in healthy adults
during high task loads and appears to be a non-specific
consequence of neurological disruption more generally
(Hillary et al. 2006; Hillary 2008). For example, the common
finding of right PFC recruitment may not be directly linked to

pathophysiology in TBI given the purported role of the right
hemisphere in handling task novelty and cognitive challenges
(Pardo et al. 1991; Gazzaniga 2000; Honma et al. 2010). At
least part of the difficulty in determining the nature of PFC
recruitment is that functional imaging studies comparing
healthy and TBI samples have a host of persistent methodo-
logical problems making data interpretation complex. Inves-
tigators focusing on group differences must guarantee
identical task performance between the samples; only when
comparable performance is achieved can one hope to reliably
interpret the meaning of BOLD signal change between groups
(Hillary 2008; Price and Friston 1999; Price et al. 2006; Price
and Friston 2002; Friston et al. 1996). This requirement for
performance control is inherently limiting for investigators
who are primarily interested in studying deficit after injury.
Moreover, there is variability in task-induced brain activation
for even very well defined cognitive tasks (e.g., the “n-back”,
the most commonly used working memory task); neural in-
volvement is greatly influenced by factors such as age, edu-
cation, and, most importantly, task performance (Bergerbest et
al. 2004; Braver et al. 1997; Rypma et al. 2006). Given the
natural variation in task-induced networks representing
normal cognitive functioning, isolating the meaning of
“abnormal activation” profiles is a daunting task, even
before considering the influence of a brain disorder with
heterogeneous outcomes such as TBI. Given these consid-
erations, the tradition of documenting the mean fMRI
signal change alone is not ideally suited to inform us
how flexible neural systems adapt to injury and disease.
Such an approach successfully isolates regional mean dif-
ferences in the fMRI signal during a task, but simply
leaves unknown what the rest of the brain is doing to
adjust to injury. A primary point of emphasis in the current
study is to focus on network change in the individual and
we will make use of a “task-practice” paradigm in order
to examine shifts in dynamic networks occurring over the
course of task engagement.

Developments in effective connectivity Beginning with sem-
inal work by McIntosh and Gonzalez-Lima in the 1990s
(McIntosh and Gonzalez-Lima 1991; 1992) there has been
significant interest in adapting effective connectivity methods
to model brain data. The past 15 years has seen a proliferation
of available statistical techniques and there has been some
application to the understanding of brain disorders (Rosanova
et al. 2012; Leavitt et al. 2012; Hillary et al. 2011; Turner
et al. 2011), but successful application of these modeling
approaches has been slow. There remain significant problems
for nearly every method to date; recent work by Smith et al.
(2011) highlights the difficulties that arise when attempting to
identify directed relations among neural network nodes. One
consistent approach in effective connectivity is to determine
the chronology of neural events by integrating information
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about “lagged” (or time dependent as in Granger Causality/
Vector Autoregression) and contemporaneous (or co-
occurring as in structural equation modeling) influences on
the model. The critical evaluation of effective connectivity
models by Smith and colleagues calls into question the like-
lihood that “lagged” effects hold any physiological meaning
given the common failure to model the BOLD signal and the
temporal difference in the BOLD response between brain
regions (Friston 2009). Overall, the findings by Smith and
colleagues are sobering and reveal that, while correlational
analyses are largely reliable and consistent, when comparing
28 approaches for effective connectivity in data simulations,
none were capable of adequately modeling the direction of
influence between-nodes.

Beginning with work by Kim et al. (2007), recent develop-
ments in structural equation modeling, including the extended
unified structural equation modeling, (euSEM) (Gates et al.
2010; Gates et al. 2011) and group iterative procedures (Gates
and Molenaar 2012) have worked to permit valid and reliable
measurement of effective networks that surpass previous
methods examined by Smith and colleagues. The euSEM is
capable of reliable estimates of both contemporaneous (i.e.,
concurrent) and lagged (i.e., time dependent) directed relation-
ships among regions of interest (ROIs). We recently used the
euSEM to examine “early” vs. “late” task acquisition effects
after TBI (Medaglia et al. 2011). Because the euSEM
can model the effect of task input on specific connections;
using this procedure we observed an important hemisphere
effect with individuals with TBI showing greater task
input in the right hemisphere whereas the influence of task
input was observed primarily in the left hemisphere in healthy
adults.

For the current study it is a goal to examine within-subject
change after TBI in a formal task practice paradigm. We will
make use of a recently developed procedure for valid group
modeling (Group Iterative Multiple Model Estimation,
GIMME) (Gates and Molenaar 2012) in order to directly
examine the influence of task practice on an extended 8-
node network. There are several advantages to the use of the
euSEM with GIMME. GIMME detects signal from noise by
looking across individuals to arrive at a group model that
ideally describes individuals comprising the group. Recently
GIMME was shown to produce valid group models even in
the presence of heterogeneity across participants (invaluable
for the current study), which is unique to this approach (Gates
andMolenaar 2012). To do so, GIMME first arrives at a group
model (i.e., a set of paths that explain the majority of individ-
ual’s models) then, using the group model as a foundation,
opens up paths on the individual-level that will improve
model fit indices for each individual. This procedure affords
a feature-based approach to grouping data that retains individ-
ual model structures as opposed to concatenating data across
individuals which is the current standard but can yield

misleading results (Kim et al. 2007). GIMME can be applied
in a purely data driven manner (when no a priori information
about the connectivity maps are available), in a partly data-
driven and partly-confirmatory manner (in which particular
connections are a priori included in the solution and/or partic-
ular connections are forbidden to be included in the solution),
and in a purely confirmatory manner. GIMME is publicly
available at http://www.personal.psu.edu/kmg311/Programs/
GIMME%20Program/.

While we focus here on modeling BOLD fMRI data to
determine inter-node influence, it should be emphasized that
the underlying characteristics of neuronal action (e.g., tim-
ing and synchrony of dendritic and axonal activity) cannot
be isolated based upon the BOLD response alone. The low
temporal resolution inherent in fMRI (the hemodynamic
response essentially operates as low resolution temporal
filter for the neural response) and biological nature of the
vascular response (which may differ across regions) makes
it impossible to assess activity on the temporal order at
which neuronal activity occurs (i.e., milliseconds). What
effective connectivity maps using fMRI data can show is if
the BOLD signal in a region statistically predicts the BOLD
signal in itself or other regions after considering other pre-
dictors of regional activity. This includes modeling the
autoregressive influence of an ROI on itself at a previous
time point. For our purposes, this will be the basis for
determining “direction of influence” and arrows between
nodes are used to identify these statistical relationships.

Goals of this paper: We aim to examine how a disrupted
neural network acquires a novel task with repeat exposure
(i.e., task practice). Here we advance our previous work in a
group of individuals with chronic TBI (see McIntosh and
Gonzalez-Lima 1992; Gates et al. 2010) with the goal of: 1)
examining connectivity changes after task practice, 2) using
the GIMME, a novel grouping procedure within the euSEM,
in order to directly examine within-group heterogeneity and
permit a data-driven approach to TBI sub-groups. Previous
work examined the influence of practice on mean signal
change in prefrontal cortex (Hillary et al. 2011) and connec-
tivity during task acquisition without formal task practice
(Medaglia et al. 2011), and the current study will combine
these analyses using a refined approach (GIMME, see Gates
and Molenaar 2012) to examine the influence of prac-
tice on brain connectivity. We anticipate that focusing on
system-level brain changes over time in the individual
matches the scale that treatments are actually delivered (i.e.,
patient-specific response).

Study hypotheses

Through the use of task practice designs we anticipate
network changes associated with improving performance.
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Hypothesis 1: Over the course of new learning, the euSEM
will reveal a diminished role of the right
prefrontal cortex relative to the left prefron-
tal cortex and this effect will be larger for
individuals who show better learning. This
hypothesis is based upon the cross-sectional
work examining mean BOLD signal
changes revealing significant recruitment
of right PFC during periods of slowed pro-
cessing (see Hillary et al. 2006) which may
be attributable to increased requirements on
attentional control resources (Pardo et al.
1991; Honma et al. 2010).

Hypothesis 2: The euSEM will reveal diminished influence
of frontal areas over posterior areas during
task practice and this effect will be larger for
individuals who show better learning. This
hypothesis is based upon the presumption
that as task procedures are formalized, there
will be greater task representation in posterior
regions and diminished demand on anterior
cognitive control systems.

Methods

Subjects Twelve individuals with TBI (ages 19‐55) were
recruited at least 1‐year post injury (see Hillary et al. 2011;
Medaglia et al. 2011). TBI severity was defined using the
Glasgow Coma Scale (GCS) in the first 24 h after injury
(Teasdale and Jennett 1974). GCS scores from 3 to 8 were
considered “severe” and scores from 9 to 12 were considered
“moderate”. Candidates for the study were excluded if they
had a history of previous neurologic disorder such as TBI,
seizure disorder, or significant neurodevelopmental disorder
such as schizophrenia or bipolar disorder. Finally, participants
were excluded if they remained in treatment for concomitant
spinal cord injury, orthopedic injury, or other injury making it
difficult to remain still in the MRI scanner. Patients with focal
contusions and hemorrhagic injuries were included unless
injuries required neurosurgical intervention and removal of
tissue resulting in gross derangement of neuroanatomy. Of
note, the focus here is on within-subject change in the TBI
sample as it relates to performance change and recovery.While
an age and education matched healthy control sample was
recruited and can be referred to for context, these data are de-
emphasized given the primary goal to examine network
change during task practice in TBI.

Neuropsychological assessment

Cognitive testing emphasized WM, processing speed, and
response inhibition. Tests include the Digit Span test from

the WAIS-III (Wechsler 1997), the Stroop task (Jensen and
Rohwer 1966; Stroop 1935), and the Trail Making Test, trials
A & B (Army Individual Test Battery: Manual of directions
and scoring 1944).

Methods for MRI data acquisition

All imaging data were acquired using a Philips 3 T and 6-
channel SENSE head coil (Philips Medical Systems, Best,
The Netherlands) or a Siemens 3 T Magnetom scanner.
While the goal of this study focuses largely on within-
subject comparisons, efforts were made to guarantee com-
parability between scanner datasets including using compa-
rable acquisition parameters. Detailed analysis of the BOLD
signal characteristics within this dataset revealed no differ-
ences in the data between MRI machines in signal-to-noise
ratio for detecting mean signal changes during task pertur-
bations. First, high resolution T1-weighted MPRAGE
images (9.9 ms/4.6 ms/8° repetition time/echo time/flip
angle (TR/TE/FA), 240×204×150 mm3 field of view
(FOV), 256×205×150 acquisition matrix, 2 averages) were
acquired. Echo planar imaging (EPI) parameters consisted
of: 2000 ms/30 ms/89°, TR/TE/FA, 230×230 mm2 FOV,
80×80 acquisition matrix, 34 4-mm-thick axial slices with
no gap between slices. Data preprocessing of the fMRI data
was performed using SPM8 software (http://www.fil.ion.
ucl.ac.uk/spm8). Data preprocessing steps included realign-
ment of EPI data, coregistration of the EPI and T1 MPRAGE,
normalization to a standardized T1 template, and spatial
smoothing with a Gaussian kernel of 8 x 8 x 10 mm3 (for
other data preprocessing details see 33,40).

Cognitive paradigms for examining processing speed and
WM To examine connectivity we use the n-back, a well-
established task to examine WM functioning (Kirchner
1958; Speck et al. 2000) and all methods are consistent with
Medaglia et al., (Medaglia et al. 2011). This block-design
paradigm begins with a 30-s baseline followed by 8 individ-
ual 20 s experimental blocks alternating with 14-s baseline
measurements (i.e., fixation stimulus). The task included a
1-back and a 2-back, with 72-point font size letters pre-
sented in the center of the screen every two seconds (ten
letter presentations per block) in pseudo-random order for
twenty-second “on” blocks. The subjects were instructed to
press a response button as quickly as possible to the target
stimuli, where target stimuli were defined as whenever the
current letter was the same as the letter immediately preced-
ing it (1-back task) or two letters prior (2-back task). During
each 10-letter block, three or four target stimuli were pre-
sented at random time points to which subjects should
respond. During each rest period, subjects were instructed
to fixate on a small asterisk presented at the center of the
display screen. Subjects performed one run each of the 1-
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back and 2-back in the scanner. Subjects then engaged in
task practice outside of the scanner, during which they
completed one novel run of 1-back and one novel run of
2-back that followed the same design described above.
Subjects were then permitted to take a ten-minute break.
Finally, subjects re-entered the scanner and performed one
more run of 1-back followed by a run of 2-back using identical
parameters and stimuli as in the first session to facilitate new
learning. For our purposes, we focus on the 2-back to docu-
ment change in network connectivity before and after task
practice.

Determining activation for WM tasks For both WM tasks,
activation was determined by comparing change in the
hemodynamic response during the 20-s experimental blocks
against baseline (i.e., fixation) using a t-test, a minimum
cluster level of 10, and a statistical threshold set at p<.001
(Note: a liberal alpha level was maintained in order to
guarantee inclusion of the full WM network). There were
two reasons for not including a control task as a baseline
here. First, it is not a primary goal in this study to isolate
specific cognitive mechanisms (e.g., separate WM encoding
from rehearsal); the goal is to examine changes in neural
networks as they relate to task performance. Second, as
noted above, there are a number of methodological pitfalls
associated with using complex control tasks in clinical sam-
ples, including differential subtraction between subjects
(Hillary 2008; Price and Friston 2002).

Procedure for euSEM and GIMME The procedure for using
the euSEM is consistent with Hillary et al. (2011), but with
the addition of the recently developed Group Iterative Mul-
tiple Model Estimation (GIMME; Gates and Molenaar
2012). The covariance matrices used for the euSEM analysis
(or uSEM when there is no influence of cognitive task
modeled) include the ROI time series at time t (where each
“t” is a single brain volume or TR) and the same ROI time
series at the next time t-1 (lagged series). For the euSEM
analysis, the covariance matrices also include two time
series of the effects of task input (for both t and t-1) con-
volved with a canonical hemodynamic response function.
The bilinear series examines the influence of task input on
the relationship between ROIs by examining each ROI time
series at each time t multiplied by the convolved task input
series at time t.

For group data, the euSEM and uSEM are fit using
GIMME which is initiated by comparing a null model to each
subject’s data. This results in a matrix of Lagrange Multiplier
equivalents, called “modification indices” (Jöreskog &
Sörbom 1992) and indicates the degree to which each indi-
vidual’s model would improve if a given parameter was freed
(i.e., a connection was created). Parameters for both lagged
and contemporaneous effects are modeled for the uSEM (no

task). When considering the influence of task “input”, the
euSEM is used to model the lagged and contemporaneous as
well as task and bilinear effects. The GIMME program makes
use of the aforementioned modification indices to identify
which parameter, if freed, would improve the greatest number
of subjects’ models to the greatest extent. The goal at this
stage is to identify the ideal model from which group infer-
ences may be made, so it is required that the majority of
individuals’ models improve if a given parameter is freed.
The criterion for how many subjects’ models must improve if
the parameter is freed, or the “similarity criterion”, was set to
be 75 % based upon the recommendations made by Smith et
al. (2011) based upon session length [(e.g., 60 min.: 100 %;
10 min.: 95 %; 5 min.: 77 %; 2.5 min.: 59 % (p.887)]. The
program repeats these steps iteratively until the criterion is not
met and those connections not meeting the 75 % criteria are
pruned. Next, GIMME identifies connections to free on the
individual level in a semi-confirmatory manner. Instead of
starting with an empty model, the first iteration applies the
group structure to the individual and estimates the connection
weights. Then, the automatic search procedure within Lisrel
identifies iteratively which parameter according to the modi-
fication indices would optimally improve the model. Finally,
nonsignificant betas are removed (providing they do not exist
for the group structure) and a confirmatory model is used for
the fit. For greater detail regarding this procedure please see
(Gates et al. 2010; Gates et al. 2011; Gates and Molenaar
2012).

Rationale for analytic approach

To examine the hypotheses, we use the GIMME procedure
to compare subgroups of subjects based upon changes from
pre to post practice during the n-back. For our purposes we
model 2-back data where we anticipate the greatest load
demand and potentially greater network shifting after task
practice. The goal of this analysis is to illustrate the use of
this connectivity approach in examining heterogeneous
responses. In doing so, we aim to determine if natural
subgroups emerge that separate subjects based upon task
acquisition.

Results

Behavioral performance during the task

Demographic and neuropsychological data are available in
Table 1. When examining behavioral data in the scanner,
accuracy did not improve in the TBI sample from pre to post
practice (pre-practice: 85 %, SD016.5; post-practice 081 %,
SD017.1). There was variable improvement in reaction
time (RT) and given the demonstrated relationship between
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RT and neural recruitment during goal directed behavior
(see Hillary et al. 2010; Rypma et al. 2006), we focus here
on RT changes. To examine the variability over the course of
task practice, we divided each session in half and analyzed
them as “early” and “late” effects for both pre- and post-
practice. Examining RT early and late both before and after
practice revealed nonlinear effects; RT consistently declined
from early to late during the first session before practice
(pre-practice “early”: RT: 822 msecs, SD0181, pre-practice
“late”: 725 msecs, SD0191). Post-practice, however the
sample showed inconsistent learning; roughly half the sam-
ple maintained the learning effects or even improved and
half showed slower RTs from early to later in the second
session and the net effect was no difference from early to
late post-practice (Post-practice “early”: RT0737, SD0185;
Post-practice “late”: RT0737, SD0232). We therefore sep-
arated the TBI sample into a group of individuals who
exhibited reduced processing efficiency or learning loss
(LL) during the second session (mean RT0718.9, SD0

232.2 early after practice and mean RT0836.7, SD0255.9
late after practice) and a group of individuals who sustained
learning (SL) after practice (mean RT0801.5, SD0230.5

early after practice and mean RT0677.4, SD0248.4 late
after practice) (see Fig. 1). Based upon these results, we
conducted additional euSEM analyses to examine the connec-
tivity in these two distinct subgroups (see Results below). Of
note, the LL and SL groups could not be dissociated based
upon age, education or other clinical factors such as GCS
score or medication use.

Results: pre-practice

The euSEM analysis revealed a common model for the 12
subjects (12-euSEM). Figure 2a shows the results for the
most common connections for the TBI group during the pre-
practice runs. The common model here reveals PFC con-
nectivity and anterior to posterior connectivity consistent
with the frontoparietal attention circuit. There is also con-
sistent between hemisphere communication between the
anterior cingulate regions, parietal regions, and the superior
cerebellum.

Results: post-practice (Hypotheses 1 and 2)

A model was estimated using GIMME for the 12 subjects
for post-practice data sets (see Fig. 2b) where this model
represents those connections most consistently observed in
12 subjects during the post-practice period. Similar to the
pre-practice findings, the subjects demonstrated PFC inter-
connectivity (with possible change in the direction of influ-
ence) and anterior to posterior connectivity. One significant
difference is the highly significant relationships between
right ACC and right parietal regions and increasing left to
right connectivity in ACC regions. Post-practice results are
consistent with pre-practice effects observed in parietal to
parietal connections, parietal to cerebellar connections, and
between hemisphere connections in the cerebellum.

Post-practice “learners” (Hypotheses 1 and 2)

To permit behavioral change to guide the analysis, we also
examined the RTs for all subjects during the post-practice
period and separated the subjects based upon the RT find-
ings shown in Fig. 1. We then conducted an additional
GIMME analysis using this RT grouping for the LL and
SL groups. The results of this analysis are depicted in
Fig. 3a,b. Primary findings include overlapping findings
between the “sustained learners” and the original post-
practice model for many connections including left to right
frontal, anterior cingulate, and cerebellar connectivity.
These two models also exhibited nearly identical right pari-
etal to left cerebellar and left parietal to left frontal connec-
tivity. The most significant differences were observed in the
influence of right PFC on left parietal region and highly

Table 1 Demographic, clinical and cognitive variables describing the
TBI sample

Demographic/Clinical Information
mean (sd) where applicable

Age 33.4 (11.8), range: 18–53

Education (years) 14.3 (2.8), range: 12–20

Gender 6 m, 6 f

GCS score 4.7 (3), range: 3–12

LOC (days) 9.5 (5.9), range: 1–21

Acute Care Stay (days) 21.4 (16.3), range: 6–60

Acute CT/MRI injury
sites (number of subjects)

DAI (4); Right frontal (4);
Left frontal (2); parietal (6);
PVA (4); Temporal (2)

Time since injury (years) 8.4 (6.6)

Injury Mechanism MVA 09, MVA-P 01, Fall 01,
Sports 01

Trail making test A 34.0 (8.9), z-score: −1.28;
Ranges: 22–48 (secs)

Trail making test B 83.4 (35.1), z-score: −1.05;
Ranges: 32–144 (secs)

Stroop 88 (20.3), z-score: −0.61;
Ranges: 51–112 (raw score)

Digit Span 17.5 (11.3), z-score: 0.11;
Ranges: 10–22 (raw score)

GCS Glasgow coma scale; DAI diffuse axonal injury; PVA peri-
ventricular area; MVA motor vehicle accident; MVA-P motor vehicle
accident against pedestrian; SD standard deviation; Normative data for
determining z-scores for Digit span were based upon [42], for the
Stroop test [55] and for the Trail Making tests [56]
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significant connections between left and right parietal
regions reciprocally. When examining the 6 subjects with
“learning-loss”, there were fewer connections with moder-
ately high or higher beta weights (e.g., >.4) and several
connections that do not appear in other models. For exam-
ple, the left PFC to right parietal connection, right ACC to
left PFC connection, and influence of ACC on bifrontal
regions are not observed in any other model (see Fig. 3a,
b). These models are heretofore referred to as the LL-
euSEM and SL-euSEM for the 6-subject euSEM results
for the LL and SL groups. Of note, while these two groups
differ for RT by design, there did not appear to be consistent
trends in accuracy that could account for the slowing in the LL
group (i.e., speed vs. accuracy tradeoff) (LL accuracy
pre 079 %, post 078 %; SL accuracy pre 086 %, post 082 %).
Comparison of neuropsychological test results revealed com-
parable numbers between subgroups but the mean education
for the SL group was greater by more than 3 years (SL
mean 015.8, sd03.4; LL mean 012.6, sd01.2). Also the
mean “time since injury” was greater in the SL group
(SL mean 010.4 years, sd07.6; LL mean 06.5 years,
sd05.6), although time since injury held only very weak
correlation to neuropsychological performance (Trails B
r00.24; Stroop r0−0.16; Digit Span r00.07).

Discussion

The goal of this paper was to demonstrate the use of a
recently developed statistical procedure for examining
heterogeneous network responses after TBI. The model-
ing approach used here, euSEM with GIMME, permits
unbiased modeling of network connections and one of
the most reliable grouping procedures available for ef-
fective connectivity (Gates and Molenaar 2012). Here
we make use of these analytic tools to examine short-

term network changes associated with practicing a WM
task after TBI.

The convention of examining mean BOLD signal change
provides a snapshot of the most salient topographical
regions associated with experimental stimulation. This ap-
proach leaves much unknown about how the involved
regions interact, their relationship to behavior, and network
dynamics over time. Ideal rehabilitative efforts after TBI
target symptoms at the individual level and we anticipate
that functional imaging studies may provide greater infor-
mation for intervention in TBI if the approach focuses on: 1)
within-subject change, 2) dynamic neural networks.

The analyses conducted here were meant to be illustra-
tive of how a novel effective connectivity approach can be
used to examine plasticity in TBI and they reveal several
findings worth commentary. Based upon the study hypoth-
eses, we anticipated that ideal task acquisition (learning
exhibited as faster RTs) would be reflected as 1) dimin-
ished role of right PFC on the left hemisphere, and 2)
greater representation in posterior attentional systems, or
parietal connectivity, and diminished DLPFC and ACC
connectivity. Partial support for these hypotheses was
observed, in particular when comparing the LL and SL
models (see below).

When considering all four models (pre-, post-, LL, and
SL-euSEMs), several “universal” connections were ob-
served: 1) left to right anterior cingulate connectivity, 2)
inter-cerebellar connectivity with greater left influence over
right Crus I, and 3) between-hemisphere parietal communi-
cation with greater influence of the right hemisphere on the
left. These connections may represent basic network com-
munication, or network “attractor states” that permit fluid,
efficient functioning (see Albantakis and Deco 2011; Katori
et al. 2011). If so, further examination into the consistency
and robustness of these connections will determine if these
components of the network serve as an anchor around which

Fig. 1 Reaction times for two TBI subgroups for Pre and Post practice
periods during the 2-back. While most subjects show decreasing RTs
from early to late pre-practice (“Pre” for both groups), the Learning
Loss group shows generally increasing RTs from early to late post-

practice. The Sustained Learning group shows either sustained or
improved performance (i.e., diminished RTs) from early to late post-
practice. The plotted data represents individual subjects
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network plasticity can be expressed. If these fundamental
network connections can be reliably identified across studies,
samples, and even tasks, investigators may provide nuanced
dependent variables for examining the influence of clinical
intervention.

With respect to the pre-practice trials, subjects consistently
showed the anticipated learning observed as diminished RTs
from early to late during the task. Mirroring the consistency
observed in these behavioral profiles, euSEM analysis (Fig. 2a)

reveals inter-hemispheric connectivity between all homologous
regions and greater influence of left on right hemisphere.

Post-practice, not all subjects continued to learn and
some even showed slowed performance as the task pro-
gressed. In the post-practice analysis, the connections were
largely consistent with the model generated prior to task
practice, with several notable exceptions. First, the post-
practice model demonstrated significant influence of right
ACC on right parietal systems not observed in the pre-
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Figure 2a,b: Network models for pre-practice (2a) and post practice (2b)

Figure 3a,b: Sustained learning group post-practice (3a) and learning loss group
post practice (3b)

Fig. 2 a,b–3 a,b Connectivity results for separate euSEM with GIM-
ME models with arrows indicating the influential relationship between
nodes. Each arrow indicates a reliable connection observe within the
sample. The “thickness” of each connection is the average beta weight

in the group for that connection (beta value labeled for each connec-
tion). For all figures: Gold 0 positive relationship, Red 0 negative
relationship, L left, R Right, PFC prefrontal cortex, Crus1 Cerebellar
Crus 1, Par parietal lobe
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practice model. Also, the right PFC influence on right ACC
is not evident here as it is in the primary model, but left PFC
has previously unobserved influence on the left ACC. There
is also left parietal to left ACC influence not observed pre-
practice. The reason for thesediscrepancies is not clear, although
the mean behavioral performances between the two groups was
different; the pre-practice performance was initially 150 ms
slower than post-practice (852 ms vs. 702 ms during the “early”
period) and the pre-practice group showed significant improve-
ment (127 ms) compared to the post-practice group (0 msecs).
Thus, these subtle differences in connectivity may be attributed
to a more dynamic network during task acquisition in the pre-
practice model compared to the more stable period behaviorally
for the post-practice model. That is, the pre-practice model may
permit greater malleability as the system moves to an optimal
learning state and the post-practice model represents an increas-
ingly stable, less flexible network as learning asymptotes. These
data demonstrate some consistency in network dynamics after
injury and future workmight start with these connection profiles
to determine the reliability of these findings and the timeline and
predictive validity of these network connections.

To further examine heterogeneous performance res-
ponses after task practice, we conducted two additional
euSEM analyses based upon subject performance: LL-
euSEM and SL-euSEM. When examining the LL-euSEM
and SL-euSEM models, there were a number of connection
differences between groups. First, the SL-euSEM model
was more consistent with the post-practice model, including
left to right influence in frontal, anterior cingulate, and
cerebellar regions. The post-practice and SL-euSEM models
also exhibited nearly identical right parietal to left cerebellar
and left parietal to left frontal connectivity. The post-
practice and SL-euSEM models are visually distinct and
quantitatively different from the LL-euSEM model, with
the LL model showing hyperconnectivity between PFC
and ACC regions. There is some support for hypothesis
one in this finding; diminished learning and/or performance
was associated with greater right PFC and ACC influence in
the model. Consistent with hypothesis two, where we antic-
ipated greater connectivity in anterior networks in cases of
diminished learning and this is also observed. Thus, after
task practice, we observe here that greater right hemisphere
representation and greater bilateral PFC and ACC cross-talk
may have association with diminished sustaining learning.
Given the heavy reliance upon PFC and ACC in the LS
group, we might interpret this as increased need for atten-
tional control as the task is more slowly processed over
time (see Cohen et al. 2000; Miller and Cohen 2001).
These observations are consistent with our previous work
focusing on the “early” vs. “late” effects in cortical con-
nections in healthy controls; task exposure resulted in

diminished connectivity anteriorly and greater anterior to
posterior connections (Hillary et al. 2011).

The findings here provide a preliminary look at how a novel
connectivity approach can be used to examine task practice
and heterogeneous responses after TBI. This approach allows
us to separate the notoriously heterogeneous brain responses
following TBI by focusing our analyses on within-subject
change in neural network responsivity. By focusing on indi-
vidual change using the most advanced brain connectivity
modeling available, the goal is to move beyond the common
practice of documenting task-specific, regional brain responses
that differentiate clinical and healthy samples. Instead we
directly address the fundamental heterogeneity in TBI by
examining the subtle network shifts occurring in the individual
that predict performance and recovery. There is very little work
using connectivity to examine how disrupted neural systems
adapt to injury, but we anticipate that such approaches offer
unparalleled opportunity to document plasticity after injury
from a systems neuroscience perspective (Sporns 2011).

Connectivity modeling offers important advantages for
understanding the plasticity that governs new learning and
may offer insights into the network shifts that permit task
acquisition years after TBI onset. Rehabilitation efforts are
geared toward maximizing this potential and connectivity
methods may move this field closer to understanding how a
disrupted neural system adapts to injury and continues to
acquire new information. While there is heterogeneity in the
response during this WM task, there are also common
connection features that emerge consistently between sub-
jects. These data are encouraging for the use of effective
connectivity in heterogeneous clinical samples.

Study limitations and future directions

The current study illustrates the use of effective connectivity
to examine hypotheses regarding within-subject change fol-
lowing TBI. However it is not without limitations including
a modest sample size of individuals with reasonably hetero-
geneous background with respect to age and the number of
years post injury. Also, this study required the use of separate
MRI scanners which may add additional variance during data
collection and dampen sensitivity to effects.We anticipate that
the focus on within-subject change helps to ameliorate some
of these concerns.

As noted above, BOLD fMRI maintains inherent limita-
tions with respect to high temporal resolution measurement.
The current data should not be interpreted here as one node
“causing” another node to become active. Moreover, ROI-
driven work implicitly simplifies an extended network in
order to examine those regions purported to play a critical role
in functioning. For our purposes, we focused on regions most
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likely to have been “recruited in traditional WM studies in
TBI. Even given the limitations to this method, we do antic-
ipate that the euSEM modeling employed here gives us a
sense for a potential hierarchy of the most robust network
effects.

For connectivity modeling to advance our understanding of
neuroplasticity and inform the next generation of rehabilitation
efforts, there are several critical future directions to be pursued.
First, the reasons for the differences that we observe between
models remains speculative, so continued examination using
effective connectivity approaches is needed to document the
reliability of these findings, including examination in other
groups, tasks, and situations including important demographic
(e.g., age) and clinical factors (e.g., diffuse vs. focal injury). The
mean values for education and time since injury were different
for the LL and SL groups and while neuropsychological per-
formance was comparable, factors such as premorbid education
and recovery time may interact after TBI to influence neural
connectivity and future work should consider these possible
nonlinear effects. Second, with regard to task practice, the
current design permitted examination of gross BOLD signal
changes using a block design which holds inherent limitations
in time scale, offering only a gross overview of the network
components involved in the task. Continued network analysis
requires use of event-related designs to improve temporal
resolution, but also so that connections can be defined as a
function of performance change. Effective connectivity
approaches such as the euSEM with GIMME now provide
the opportunity to include RT or accuracy as a vector of
interest, thus allowing for documentation of those connections
most highly influenced by performance change (Gates and
Molenaar 2012). Finally, advancements by connectivity mod-
eling require verification using additional imaging modalities
(e.g., high density EEG, magnetoencephalography), thus pro-
viding complimentary data and crucial support that the ob-
served changes are neural as opposed to vascular in nature.
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