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Abstract

Despite recent research indicating that interpersonal linkage in physiology is a com-
mon phenomenon during social interactions, and the well-established role of
respiratory sinus arrhythmia (RSA) in socially facilitative physiological regulation, lit-
tle research has directly examined interpersonal influences in RSA, perhaps due to
methodological challenges in analyzing multivariate RSA data. In this article, we aim
to bridge this methodological gap by introducing a new method for quantifying inter-
personal RSA influences. Specifically, we show that a frequency-domain statistic,
generalized partial directed coherence (gPDC), can be used to capture lagged relations
in RSA between social partners without first estimating RSA for each person. We
illustrate its utility by examining the relation between gPDC and marital conflict in a
sample of married couples. Finally, we discuss how gPDC complements existing
methods in the time domain and provide guidelines for choosing among these different
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statistical techniques.
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1 | INTRODUCTION

Although psychophysiology has been primarily studied as an
intraindividual process, recent research suggests that interper-
sonal linkage in physiology is a common phenomenon during
social interactions (Butler, 2011; Palumbo et al., 2016; Tim-
mons, Margolin, & Saxbe, 2015). Social partners are found to
synchronize or coregulate one another through various bio-
logical systems, and the characteristics of these processes
are shown to have meaningful and important implications
across various contexts, such as in parent-child interactions
(Feldman, Magori-Cohen, Galili, Singer, & Louzoun, 2011;
Field, Healy, Goldstein, & Guthertz, 1990; Ham & Tronick,
2009; Moore et al., 2009), romantic relationships (Ferrer &
Helm, 2013; Helm, Sbarra, & Ferrer, 2012; Levenson &
Gottman, 1983; Liu, Rovine, Klein, & Almeida, 2013; Saxbe
& Repetti, 2010), between therapists and clients during

gPDC, Granger causality, interpersonal physiology, marital conflict, RSA

psychotherapy (Marci, Ham, Moran, & Orr, 2007; Marci &
Orr, 2006; Stratford, Lal, & Meara, 2012), among women
discussing a film (Butler, Wilhelm, & Gross, 2006), and
among teammates during collaborative tasks (Strang, Funke,
Russell, Dukes, & Middendorf, 2014; Walker, Muth, Switzer,
& Rosopa, 2013). This article focuses on interpersonal influ-
ences in respiratory sinus arrthythmia (RSA), a measure of
parasympathetic control on heart rate. Although RSA is a
well-documented indicator of socially facilitative physiologi-
cal regulation (Porges, 1995, 2007), research on interpersonal
RSA linkage is surprisingly rare. This lack of research may
be partly due to the underdevelopment of statistical methods
for properly quantifying associations between multivariate
RSA data. The current study thus aims to bridge this meth-
odological gap. In particular, we introduce a frequency-
domain statistic—generalized partial directed coherence
(gPDC)—for quantifying interpersonal RSA influences
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without first estimating RSA for each person. Originally
developed for analyzing EEG data (Baccala & de Medicina,
2007; Baccala & Sameshima, 2001), gPDC is a validated
measure for capturing lagged regression relations with multi-
variate time series data. In this article, we illustrate how
gPDC can be adapted to measure interpersonal RSA influen-
ces using empirical data from a sample of married couples.
We also discuss how gPDC complements existing methods in
the time domain and provide guidelines for choosing among
these different statistical techniques.

1.1 | Time domain methods for assessing
RSA linkage

RSA refers to the variation in cardiac rhythms across the
respiratory cycle. Conventionally, RSA is quantified by per-
forming a Fourier transform on the interpolated interbeat
intervals (IBI) series, which indicate the time between each
R peak in the electrocardiogram (ECG). The power in the
frequency range of respiration indicates the variance in IBI
that is attributable to respiration, and is used as a measure of
RSA. To ensure a sufficient number of data points to accu-
rately estimate power, Fourier transform is typically con-
ducted based on IBI series in 60- to 120-s epochs (Task
Force, 1996). However, because most research on physiolog-
ical linkage involves social interactions that last for only a
few minutes, this conventional method typically does not
yield enough RSA estimates for modeling dynamic processes
at the level of the social unit (e.g., dyad).

With increasing interest in modeling physiological proc-
esses in social interactions, recent research has aimed to mea-
sure RSA based on shorter IBI epochs, thus producing a
larger number of RSA estimates per person given the same
length of IBI series. For example, Gates, Gatzke-Kopp,
Sandsten, and Blandon (2015) demonstrated that a multita-
pering algorithm called peak matched multiple windows
(Hansson & Jonsson, 2006), applied before Fourier trans-
form, could produce precise estimates of power at the respi-
ratory frequency band. Hence, they were able to obtain
accurate RSA measures with 32-s IBI segments. Using a
moving window that shifts forward 1 s at a time, they
obtained time series data containing hundreds of RSA values
per person based on minutes of dyadic interactions, which
allowed them to assess interpersonal synchrony in RSA with
the within-dyad correlation. A similar approach was used in
a study by Helm, Sbarra, and Ferrer (2014), who obtained
RSA values based on Fourier transform of 30-s nonoverlap-
ping IBI segments. With the short time series that data pro-
duced (~28 observations), they were able to examine RSA
coregulation using a multilevel cross-lagged regression
model. In these and other similar studies (Creaven, Skowron,
Hughes, Howard, & Loken, 2014; Elkins et al., 2009; Hill-
Soderlund et al., 2008; Lunkenheimer et al., 2015; Walker

et al., 2013), RSA was first estimated for each person over
time and then analyzed with a statistical model involving
time (e.g., a cross-lagged model) to capture the dynamic
characteristics of interpersonal physiology. Hence, although
the estimation of RSA involves frequency-domain techniques
(i.e., Fourier transform), we refer to these methods as time
domain methods for assessing RSA linkage.

1.2 | Assessing RSA linkage in the frequency
domain

In this article, we introduce a frequency-domain approach for
directly evaluating lagged relations in the respiratory fre-
quency band, which provides an alternative method for
assessing RSA linkage. Importantly, this method bypasses
the estimation of RSA, and hence may be particularly suita-
ble for studying social interactions that last for only a short
period of time. Specifically, this approach utilizes gPDC, a
measure originally developed by Baccala and colleagues
(Baccala & de Medicina, 2007; Baccala & Sameshima,
2001) to examine functional connectivity patterns in the
brain with EEG data. EEG signals are known to be rhythmic,
with different frequency bands corresponding to different
“waves” that have distinct clinical implications. As such,
they share common statistical properties with heart rate sig-
nals. The use of gPDC to assess RSA linkage is thus a natu-
ral extension of this technique. Because the reliability and
validity of gPDC in representing frequency-domain lagged
effects have been studied elsewhere (de Brito, Baccala,
Takahashi, & Sameshima, 2010; Van Wettere, Marinazzo,
Lanquart, Linkowski, & Jurysta, 2013), we focus here on
demonstrating its utility for studying RSA linkage. In the fol-
lowing, we first give a brief introduction to the estimation of
gPDC at the respiratory frequency band with IBI data, and
then present an empirical example in which these statistics
are used to examine interpersonal RSA influences and their
covariates in a sample of married couples.

1.2.1 | Estimating gPDC

The estimation of gPDC is conducted in the framework of the
vector autoregressive (VAR) model, a commonly used statis-
tical model for examining lagged relations with stationary
multivariate time series data (i.e., time series whose statistical
properties, such as mean and variance, are constant over
time). A general form of a VAR model can be written as

Y =AIXY A XY 0t HAXY U (1)

where f’, is an m X [ vector of observed data at time ¢ with
mean zero, A, are m X m matrices of regression coefficients
at lag k up to a max lag of order p, and U, represents an
m-dimensional Gaussian residual process (Liitkepohl, 2006).



LIU ET AL.

The parameters on the diagonal of A; are the autoregressive
coefficients, which represent the temporal dependency of a
variable on itself, whereas the off-diagonal parameters are
the cross-lagged regression coefficients, which represent the
temporal dependency of a variable on another variable. Impor-
tantly, because the VAR model controls for the autoregressive
relations, the cross-lagged coefficients can be interpreted as a
special kind of causal lagged effect from one variable to
another, which is known as Granger causality (Granger, 1969).
For example, if 17, is a bivariate time series (i.e., m = 2) of a
particular physiological measure from two partners in a hetero-
sexual relationship, the VAR model would produce two sets of
cross-lagged coefficients, one representing the so-called
Granger causal effect from the male to the female, and the
other representing the Granger causal effect from the female to
the male. The magnitudes of these coefficients are commonly
interpreted as the strengths of coregulatory effects in the dyadic
system (Fisher, Reeves, & Chi, 2016; Gates & Liu, 2016;
Helm et al., 2014). However, because of the possibility of
omitted variables, Granger causality may not always represent
truly causal relations. Hence, when interpreting these coeffi-
cients, researchers need to apply the same caution as when
interpreting any regression coefficient, and consider alternative
explanations that may give rise to interpersonal lagged rela-
tions, such as a shared social context.

Conceptually, gPDC is the counterpart of the cross-
lagged coefficients in the frequency domain. It is computed
by performing a discrete Fourier transform on A, from Equa-
tion 1, which yields

A(f) =I—zp:Ak-exp(—i2nﬂ<). (2a)
=1

where i =+/—1. Here, k indicates the lag, and f represents
the discrete frequency components:

f=%,n=0, 1, ...,N—1. (2b)

where N is the number of time points in the original time
series. The zero frequency component (n = 0) corresponds to
the mean of the data, and hence will equal zero if data are
centered. The nth component, where 0<n< %, represents the
discrete frequency with n cycles in N data points. The dis-
crete frequency with n= %’ also known as the Nyquist fre-
quency, is the highest frequency that can be represented with
the current sampling rate." For example, consider a zero-
mean (centered) time series measured every second over 60 s
(Figure 1). Suppose this time series is best represented by a
VAR model of Order 2, hence p = 2. Based on Equation 2a
and 2b, we can obtain a series of A(f), where f=2, & -,
%. The component A(%) would equal zero because the data

'Discrete frequencies with %<n<N correspond to the frequency band
between the negative Nyquist frequency and zero.
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are centered. The component A(g) represents the lagged
influences between variables at the lowest discrete frequency
for these data, namely, 1 cycle per 60 s (solid line). This

matrix can be computed as

1 1
A<@> =I—[A; - exp (—i2m (@) x1)+A,
~exp (—i2m <%) *2)], 3)

where A; and A, are the matrices of regression coefficients
in the estimated VAR model. Similar computation can be
performed for other discrete frequency components. Lastly,
A(%) represents the lagged influences between variables at
the highest discrete frequency component, namely, 30 cycles
per 60 s, or 1 cycle per 2 s (Figure 1, dotted line). It can be

computed as

30 30
A(E)ZI—[AI -exp (—i2m (@> x 1)+A,
-exp (—i2m (%) *2)]. 4)

The dimensions of A(f) are the same as the dimensions
of A;. That is, if the time series is bivariate (i.e., m = 2) and
hence Ay are 2 X 2 matrices, A(f) will also be 2 X 2 matri-
ces. Because discrete Fourier transform is simply a mathe-
matical transformation, no information is gained or lost.
Hence, the resulting matrices A(f) contain the same informa-
tion as their time domain counterparts A; about the temporal
associations among variables. That is, the elements on the
diagonal of A(f) represent autoregressive effects, whereas
the elements off-diagonal represent cross-lagged effects.
However, unlike A;, which are interdependent with each
other and hence cannot be directly interpreted when the order
of the VAR is larger than 1, A(f) at different frequencies are
orthogonal to each other. Therefore, each A(f) matrix only
includes information at the corresponding discrete frequency
and can be interpreted accordingly.

Based on A(f), gPDC at a particular discrete frequency f
can be estimated as

S Ai(f)
m 2
Zizl G%’ |Au(f)|

Here, A;(f) is the element in the ith row, jth column in
A(f), where i and j range from 1 to m, and o7 is the residual
variance of variable i. In other words, gPDC;; represents the
ratio between the effects from variable j to i in respect to the
sum of effects that j has on all variables (including itself),
weighted by the standard deviation of the residuals to make
it scale invariant. It has been shown that this index is a valid
representation of Granger causality, and hence a measure of
the direct lagged effect of variable j on variable i, at a partic-
ular frequency f, controlling for all variables included in the

2. )

gPDCy(f)= ‘
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FIGURE 1 Transformation from time domain to frequency domain. Each dot represents one data point. Solid line represents the lowest discrete fre-

quency component that can be captured by these data. Dotted line represents the highest discrete frequency component that can be captured by these data.

The power of these two components are represented by the magnitudes of the waves, which are arbitrarily selected here for ease of display

model (Baccala & Sameshima, 2001; Schlogl, 2007; Schlogl
& Supp, 2006). As a ratio, it is bounded between 0 and 1. In
general, higher values of gPDC indicate larger effects. How-
ever, when evaluating effect sizes, it is also important to take
into account the number of variables in the data. For exam-
ple, for bivariate data, a gPDC of 0.1 may be considered
small because only 10% of the total effects from a given vari-
able are cross-lagged effects, and the remaining 90% are
autoregressive effects. However, if there are a large number
of variables in the data (such as in EEG brain imaging), a
gPDC of 0.1 may be considered a large effect.

Because RSA is the variance in IBI at the respiratory fre-
quency band, interpersonal influences in RSA can be directly
assessed by examining the lagged effects (i.e., gPDC) at the
same frequency band obtained from interpersonal IBI series.
For example, imagine that we have bivariate IBI series interpo-
lated at 4 Hz from two social partners who had a conversation
for 60 s, hence N = 240 IBI values per person. A VAR model
(Equation 1) can be fit to the data, producing a series of gPDC
values at 240 discrete frequencies (Equation 2, 5). In the range
of O0<n< %, the nth discrete frequency corresponds to the cycli-
cal pattern with n period(s) in 60 s (i.e., n/60 Hz). Therefore,
the adult respiratory frequency band, 0.12-0.40 Hz, is repre-
sented by discrete frequencies in the range between n = 7 (7/60
~ 0.12 Hz) and n =24 (24/60 = 0.40). The average gPDC
across these frequencies thus represents the lagged -effects
between the two partners’ RSA, which can be used in further
analyses to examine covariates of interpersonal RSA influences.

In the following, we demonstrate this approach with an
empirical example of marital conflict. There is some evi-
dence that physiological linkage is associated with marital
quality. For example, Levenson and Gottman (1983) found
that married couples with lower marital satisfaction on aver-
age have greater physiological concordance in their heart rate
and skin conductance levels when discussing problems in

their marriage. They argued that, in the context most likely
infused with negative affect, physiological linkages reflect the
scenario where both partners are “locked into” the interaction
and unable to “step back.” Similarly, stronger synchrony in
cortisol, a biomarker of stress reactivity, has been found to be
related to lower marital satisfaction and higher marital strain
(Liu et al., 2013; Saxbe & Repetti, 2010), suggesting that the
insusceptibility to stress of the spouse may be beneficial for
relationship quality. However, research examining RSA link-
age in marital relationships is rare. To our knowledge, only
two studies directly addressed this research question, and their
findings were mixed. Helm et al. (2014) found that higher
lagged influences between romantic partners during a series
of conversation tasks is associated with higher relationship
satisfaction. In contrast, a previous study using the current
data set found a positive relation between marital conflict and
concurrent synchrony in RSA between spouses during family
free play with their children (Gates et al., 2015). Because
physiological linkage was operationalized differently in these
two studies (lagged influence vs. concurrent association), it is
unclear whether the mixed findings may be partly due to the
methodological differences. Hence, in this study, we extend
the previous work by examining whether lagged influences of
RSA between spouses, as quantified by gPDC, are related to
marital conflict. Based on past research with the same data
and existing literature on linkage of other physiological sig-
nals, we hypothesize a positive relation between the strength
of influences and conflict for both partners.

2 | METHOD

2.1 | Participants

Families were recruited through newspaper birth announce-
ments, flyers posted at day cares, and a database of local



LIU ET AL.

families interested in participating in research as part of a
larger study on parenting practices. To participate, couples
had to be married or cohabitating and have two biological
children between the ages of 2 and 5 years. A total of 70
families were recruited for the larger study; only 49 couples
provided usable data for the present study (see Gates et al.,
2015, for full description of data). Wives in the present study
were, on average, 33 years old (SD = 4.07) and 49% were
employed. Husbands were, on average, 35 years old
(SD=4.78) and 94% were employed. The median family
income was $70,000 (range $10,000 to $250,000). The sam-
ple was predominantly White (wives: 89% White, 8% His-
panic/Latino, 2% other; husbands: 92% White, 6% Hispanic/
Latino, 2% other). Couples were married for an average of 9
years (SD = 2.59).

2.2 | Procedure

Families participated in a 2 1/2 hr laboratory visit, including
procedures not described here, as part of a larger study. After
obtaining informed consent, electrodes for recording cardiac
data were attached to each family member. Families then
participated in several interaction tasks. For the current study,
cardiac data were collected during a tetradic family free-play
(10-min) session where parents were instructed to play with
their children as they would at home.

Parents were asked to complete a series of question-
naires. The present study utilizes wife and husband responses
on the conflict subscale of the Intimate Relations Question-
naire (Braiker & Kelley, 1979), which is comprised of five
questions concerning argument frequency, desire to change
spouse, anger/resentment, problem severity, and negativity.
Items were rated on a 9-point Likert scale (1 = not at all to
9 = very much) and averaged to create a composite score.
Husbands and wives did not differ in level of reported con-
flict (paired t = .97, p = .33). Reliability for the present sam-
ple was good: Cronbach’s alpha was .74 for wives and .77
for husbands.

2.3 | Physiological assessment

Cardiac data were assessed via three electrodes placed on the
torso of the husband and wife in a Lead II configuration. An
additional four electrodes were used to assess impedance,
which was not examined in the current study. Ambulatory
ECGs (MindWare Ambulatory Impedance Cardiograph
Model 1000a) using the Mindware WiFi ACQ software, Ver-
sion 3.0.1 (Mindware Technologies, Ltd., Westerville, OH)
were used to collect the data. The ECG signal was sampled
at a rate of 500 Hz and band-pass filtered at 40 to 200 Hz.
Data from both participants were recorded simultaneously
and time-locked to one another. The MindWare editing pro-
gram (HRV v. 3.0.17) was used to identify IBIs and detect
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physiologically improbable intervals based on the overall dis-
tribution using a validated algorithm (Berntson, Quigley,
Jang, & Boysen, 1990). Trained research assistants manually
edited the data as appropriate, or determined it to be of insuf-
ficient quality.

Of the 70 couples who participated, 21 dyads were
removed from the present analysis because equipment failure
occurred for one (n = 11) or both (n = 10) of the individuals.
No differences were observed in reported marital conflict
between participants who did and did not have cardiac data
for wives (= 2.09, p =.95) or husbands (r = 2.02, p = .94).
The data are thus taken as missing at random.

2.4 | Assessment of interpersonal RSA
influences

The point-process IBI series was interpolated at 4 Hz using a
cubic spline to arrive at equidistant data points (De Boor,
1978), then differenced and centered to remove trends. These
decisions follow those that are often used when developing
methods for arriving at RSA estimates (Hansson & Jonsson,
2006; Hansson-Sandsten & Jonsson, 2007) as well as within
popularly used proprietary software (e.g., Mindware; Bernt-
son et al., 1997). Augmented Dickey-Fuller tests (Dickey &
Fuller, 1979) were performed to detect trends in the resulting
time series, and none of the time series had a significant
trend. Hence, each couple’s data were fitted with a VAR
model using the ar function in R (R Core Team, 2015), and
the number of lags needed was determined by the Akaike
Information Criterion (AIC; Akaike, 1974). The estimated
VAR model was then Fourier transformed to produce gPDC
estimates at various discrete frequencies. The mean of gPDC
at the respiratory frequency band (0.12-0.40 Hz) from the
wife to the husband was used to quantify RSA influence
from the wife to the husband, and denoted as gPDC,. Simi-
larly, RSA influence from the husband to the wife was esti-
mated and denoted as gPDCy;,. R code for computing gPDC
for one of the dyads can be found in the online supporting
information.

3 | RESULTS
We found a large amount of variability in the form of the
estimated VAR models. In particular, the order of the VAR
models ranged from 8 to 28, with a median of 16. The vari-
ability in the estimated VAR models, however, does not
affect the comparison of gPDC across dyads, which high-
lights one of the advantages of directly assessing RSA influ-
ences in the frequency domain.

The mean gPDC of the sample was 0.12 (SD = 0.07),
and the mean gPDC was 0.11 (SD = 0.06). Both variables
were highly positively skewed. An examination of the
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Descriptive statistics of gPDCy,, (wife-to-husband

TABLE 1
influence) and gPDC,,, (husband-to-wife influence)

Variable N Mean SD Min Max Skewness Kurtosis
gPDCyp,, 48 0.11 0.05 0.04 025 1.04 1.26
gPDC,;, 48 0.10 0.05 0.04 026 1.30 1.24

distributions revealed that the skewness was caused by an
outlier whose values were more than 4 standard deviations
above the mean in both variables. Hence, we removed this
outlier from further analyses. Descriptive statistics for the
remaining 48 couples are summarized in Table 1. It can be
seen that the two variables had very similar statistical proper-
ties. Overall, interpersonal RSA influences in this sample of
couples were not strong, but there was some variability
across couples in these measures. Importantly, the correlation
between gPDC,,, and gPDC,,;, was very small and not sig-
nificant (r = 0.04, p = .82), indicating that the two measures
were capturing different aspects of the dyadic processes.

Associations between strengths of partner influences and
marital conflict were tested using an actor-partner interdepend-
ence model (APIM; Kenny, Kashy, & Cook, 2006). APIM is
a dyadic model that takes into account the interdependence
between social partners by simultaneously estimating actor
effects (i.e., the effects of oneself) and partner effects (i.e., the
effects of a partner). Here, we consider the effect of gPDCy,
on wife’s perceived marital conflict as an actor effect, and
vice versa for the husband.” Similarly, we consider the effect
of gPDC,,;, on wife’s perceived marital conflict as a partner
effect, and vice versa for the husband. The model was esti-
mated in LISREL 9.2 using the full-information maximum
likelihood method to handle missing data (Joreskog &
Sorbom, 2015), and the standardized coefficients are shown in
Figure 2. There was a positive actor effect for wives, such that
higher gPDC,,, was associated with higher marital conflict
reported by the wife (r=0.33, p <.05). However, no actor
effect was found for the husband. In addition, neither of the
partner effects was significantly different from zero.

To examine whether gPDC truly reflects characteristics
of the dyadic processes, we further conducted a permutation
test by estimating gPDC for randomly paired couples.
Whereas the means of the gPDC estimates from these ran-
domly paired couples were similar to the matched couples
(gPDCyy, = 0.11; gPDCy,, = 0.12), they were not associated
with the marital conflict variables. Hence, although we

’The definitions of actor and partner effects in our model are somewhat
arbitrary because our predictor variables, gPDCy,, and gPDC,,, already
involve both partners. However, we think that the definition used here is
more intuitive because gPDCy,,, represents the influence from the wife to
the husband.

cannot rule out the possibility that influences between part-
ners may be partly due to the shared context, these results
suggest that gPDC indeed captures the unique patterns of
dynamic interactions for matched dyads.

In sum, our results indicate that characteristics of RSA
linkage during marital interactions do reflect marital quality.
The direction of effect we found is consistent with the major-
ity of research on couple physiological linkage, which gener-
ally shows a negative association between strength of linkage
and marital quality. However, our study also reveals substan-
tial variability in the results when taking into account gender
and the direction of physiological influences. Specifically, the
relation between physiological linkage and marital conflict
was only present for the wife, and when wife-to-husband
influence in RSA was the predictor. Assuming that higher
wife-to-husband influence in RSA reflects higher degree of
wife’s control over the interaction, this finding suggests that
wives (but not husbands) who perceive themselves to be in
high-conflict marriages may have husbands whose RSA val-
ues are greatly influenced by their partners when interacting
with their spouses, even in a nonconflict situation.

4 | DISCUSSION

The current work contributes to the literature on interpersonal
physiology by introducing a new method for directly assess-
ing interpersonal RSA influences in the frequency domain.
Our empirical example reveals a negative association
between the strengths of physiological influences and an
aspect of marital quality. However, given the mixed findings
in other similar research on RSA specifically (Helm et al.,
2014), it is too early to draw a decisive conclusion regarding
the association between RSA linkage and marital relation-
ship. Nonetheless, our results are consistent with previous
research based on different psychophysiological measures
that found higher levels of linkage related to lower marital
satisfaction (Levenson & Gottman, 1983; Liu et al., 2013;
Saxbe & Repetti, 2010). In addition, we find intriguing vari-
ability in the results across gender and direction of influen-
ces, highlighting the importance of considering these
nuances when studying social interactions.

Wife’s
gPDChy Conflict
.03 .50*
Husband’s
9PDCu Conflict

FIGURE 2 Standardized coefficients for the actor-partner interde-
pendence model
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The current method complements existing time domain
methods for assessing RSA linkage in several important
ways. First, gPDC is directly derived from the VAR model
fitted to the IBI data, thus bypassing the estimation of RSA.
This is an appealing feature when the duration of ECG mea-
surement is short, such as when studying transient social
interactions. In these scenarios, the number of RSA values
that can be extracted using traditional methods is small, which
limits the analytic techniques available for examining inter-
personal physiology. For example, with only a few repeated
RSA measurements per person, researchers are often
restricted to studying interpersonal physiology using models
that aggregate data across dyads to produce an overall group-
level estimate. This is not ideal given the large amount of het-
erogeneity often found in these dynamic processes (Ferrer &
Steele, 2014; Gates & Liu, 2016; Gonzales & Ferrer, 2014).
In contrast, gPDC provides a way to estimate RSA influences
at the dyad level even with short IBI series, thus allowing
researchers to answer a larger range of questions, such as pre-
dictors and consequences of interpersonal physiology.

Second, as a frequency domain statistic, gPDC provides
an overall measure of directed lagged effect that is summar-
ized across time lags. In other words, gPDC does not distin-
guish between effects occurring at different time scales, as
long as they are well represented in the data. This is contrary
to many time domain methods for assessing RSA linkage,
such as the cross-lagged model, in which the temporal inter-
val of effects (i.e., time lags) need to be specified precisely.
Although the temporal interval of effects can bear important
theoretical meanings, it is often difficult to determine its
appropriate value in empirical studies. In addition, assuming
a fixed temporal interval for the entire sample may be overly
restrictive. For instance, a one-lag cross-lagged regression
model assumes that an individual’s physiology at time ¢
depends on and only depends on the partner’s physiology at
time #-/. This may or may not reflect the reality because (a)
in some studies the amount of time between ¢ and #-/ is com-
pletely arbitrary, and (b) there is likely variability in the inter-
vals of lagged effects across dyads. In fact, interpersonal
physiology is so complex and diverse that some have argued
that exploratory approaches may be more suitable for study-
ing these phenomena than parameterized models (e.g., Ferrer,
2016). Although gPDC is estimated based on a parameter-
ized model (i.e., VAR), it is less restricted than most time
domain models because it does not require a prespecified
number of lags, thus allowing variability in the temporal
interval of effects across dyads. As such, we argue that
gPDC may be a more robust way to capture lagged relations
in RSA than existing time domain methods.

It should also be noted that our empirical example only
illustrates one possibility of using gPDC to study interperso-
nal RSA influences, namely, in dyadic interactions. Origi-
nally developed to analyze higher-dimensional time series
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data, the method can be easily extended to study social inter-
actions that involve more people. With ECG measurements
from a triad, for example, one can derive six gPDC measures
that represent all combinations of dyadic influences, impor-
tantly controlling for influences of the third person. In addi-
tion, gPDC can be used as an idiographic method, in which
statistical inferences can be drawn at the level of the social
unit based on surrogate data sets. For example, if a researcher
is interested in testing whether the influence from Partner A
to Partner B in a given dyad is statistically different from
zero, a large number of surrogate data sets can be generated
whose statistical properties are identical to the original data,
except that there is no lagged influence from A to B. gPDC
can then be estimated from these surrogate data sets, the dis-
tribution of which represent the null distribution of the statis-
tic and can be used for inferences. Similarly, if a researcher
wants to assess RSA influences between a therapist and a cli-
ent over a number of psychotherapy sessions to evaluate
changes in the interpersonal dynamics, statistical testing can
be conducted to compare the different gPDC values across
sessions by constructing confidence intervals for each ses-
sion. For more details of the surrogate data method, we refer
interested readers to Liu and Molenaar (2016).

Whereas gPDC provides a flexible way to assess inter-
personal RSA influences, it is certainly not a one-size-fits-all
method. When selecting a proper analytic approach, several
restrictions of gPDC need to be taken into consideration.
Most importantly, gPDC assesses influences between indi-
viduals at the same frequency band. Hence, it is only appro-
priate when the social partners share the same RSA
frequency band (e.g., adult to adult). In other words, it can-
not be used to assess RSA influences between adults and
young children. In addition, because gPDC is bounded
between O and 1, it does not distinguish between positive
and negative influences. In some cases, the sign of an effect
may have important theoretical implications. For example, a
negative effect, especially in the context of a stressful situa-
tion, is often interpreted as one individual downregulating
another individual’s physiology, and thus corresponds to a
morphostatic process where social partners coregulate each
other’s physiology so that they stabilize within optimal
bounds (Butler, 2011; Butler & Randall, 2013). On the other
hand, a positive effect may be interpreted as one individual
promoting or exacerbating another individual’s physiological
responses, which corresponds to a morphogenic process that
eventually leads to a downward spiral of negative reactions.
To distinguish between these different processes, researchers
will need to select alternative modeling methods that capture
the sign of an effect, such as the cross-lagged regression
model, estimated either at the dyad level or the sample level
(Gates & Liu, 2016; Helm et al., 2014).

Another limitation of gPDC is its reliance on stationarity,
an assumption of the data to have time-invariant statistical
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properties (e.g., mean and variance). In empirical data, this
assumption may be violated. For example, although we did
not find significant trends in the differenced IBI series in this
study, there may be systematic trends in RSA that bear
important meanings. If researchers are interested in capturing
interpersonal linkage in these trends, gPDC would not be
appropriate. Instead, time domain methods for modeling
multivariate change trajectories, such as growth curve analy-
sis (Laurenceau & Bolger, 2005; Reed, Randall, Post, & But-
ler, 2013) and dynamical correlation (Liu, Zhou, Palumbo, &
Wang, 2016), may be considered. Even if there is no system-
atic trend, the stationarity assumption may still be violated if
influences between social partners change over time. For
example, it could be that during a 10-min marital interaction,
the husband has a medium influence on the wife in the first 5
min (gPDC =0.3), and no influence in the last 5 min
(gPDC = 0). If we estimate gPDC from the husband to the
wife using data from the whole 10-min period, we will
obtain a gPDC of 0.15, which represents the average strength
of influence. Although this value is still informative for
examining between-dyad associations, information on
within-dyad variation is lost. In studies where within-dyad
variation is the focus, researchers may consider extending
the current approach by utilizing a sliding window method,
which involves sliding the data into shorter time windows
and estimating gPDC within each time window (e.g., Boker,
Rotondo, Xu, & King, 2002; Gates et al., 2015; Liu, Mole-
naar, Rovine, & Goodwin, 2012). Importantly, the sliding
window approach still assumes local stationarity within each
window and hence is not suitable for representing quickly
changing processes. In the latter cases, researchers will need
to consider truly time-varying models, such as the time-
varying effects model (e.g., Shiyko, Lanza, Tan, Li, & Shiff-
man, 2012), state-space models (e.g., Chow, Zu, Shifren, &
Zhang, 2011), and the generalized additive models (Bring-
mann et al., 2017), for appropriately analyzing the data.

It should also be noted that gPDC is essentially a compos-
ite of the cross-lagged regression coefficients, which can con-
tain information on both the direct and indirect influences
between partners. Hence, if the major research question
involves determining whether or not partners directly influence
each other in a social context, it is not sufficient to carry out
null hypothesis testing on gPDC alone. Palumbo et al. (2016)
discuss several ways that researchers can improve the internal
validity of research, such as carrying out permutation tests with
randomly paired dyads, and measuring physiological linkage
in a baseline condition where no direct influence is expected.

Finally, other than lagged influences, RSA linkage can
take various forms, which may be better represented by other
methods. For instance, time domain correlational statistics
(Gates et al., 2015; Liu et al., 2016) provide measures for
concurrent synchrony, whereas differential equation models
(Ferrer & Helm, 2013; Ferrer & Steele, 2014) allow

researchers to examine coupling effects in change, rather than
level, of the data. At this point, there is not sufficient research
on interpersonal physiology for accurately predicting how
these distinct forms of linkage may have different implica-
tions. However, there has been important theoretical work
distinguishing between different types of linkage as well as
methodological pieces that summarize the various ways of
assessing them (e.g., Butler, 2011; Gates & Liu, 2016; Pal-
umbo et al., 2016). With increasing interests in this area due
to technological developments in measuring autonomic activ-
ities, it is our hope that more empirical evidence will be
gained to provide better answers to these important questions.
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