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Abstract

Psychological researchers often seek to obtain cluster solutions from sparse count matrices

(e.g., social networks; counts of symptoms that are in common for two given individuals;

structural brain imaging). Increasingly, community detection methods are being used to

subset the data in a data-driven manner. While many of these approaches perform well in

simulation studies and thus offer some improvement upon traditional clustering

approaches, there is no readily available approach for evaluating the robustness of these

solutions in empirical data. Researchers have no way of knowing if their results are due to

noise. We describe here two approaches novel to the field of psychology that enable

evaluation of cluster solution robustness. This tutorial also explains the use of an

associated R package, perturbR, which provides researchers with the ability to use the

methods described herein. In the first approach, the cluster assignment from the original

matrix is compared against cluster assignments obtained by randomly perturbing the edges

in the matrix. Stable cluster solutions should not demonstrate large changes in the

presence of small perturbations. For the second approach, Monte Carlo simulations of

random matrices that have the same properties as the original matrix are generated. The

distribution of quality scores (“modularity”) obtained from the cluster solutions from these

matrices are then compared with the score obtained from the original matrix results. From

this, one can assess if the results are better than what would be expected by chance.

perturbR automates these two methods, providing an easy-to-use method for psychological

researchers. We demonstrate the utility of this package using benchmark simulated data

generated from a previous study and then apply the methods to publicly available

empirical data obtained from social networks and structural neuroimaging.
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Assessing the Robustness of Cluster Solutions Obtained from Sparse Count Matrices

Introduction

Cluster analysis has been widely used in social science research since at least 1943

(Cattell, 1943). Researchers have employed cluster analysis for achieving numerous ends,

with objectives ranging from identifying clusters of behaviors that tend to co-occur in

individuals (e.g., Newby & Tucker, 2004) to classifying subsets of brain regions that

activate together across time (e.g., Mezer, Yovel, Pasternak, Gorfine, & Assaf, 2009).

Increasingly, a complementary class of analyses called “community detection” has been

used in psychological studies to identify clusters of individuals in matrices ranging from

social networks (e.g., Papadopoulos, Kompatsiaris, Vakali, & Spyridonos, 2012) to

constellations of symptoms (Bringmann, Lemmens, Huibers, Borsboom, & Tuerlinckx,

2015), much like traditional cluster analysis applications. One particular community

detection algorithm, Walktrap (Pons & Latapy, 2006), has many similarities with cluster

analysis while also bringing a number of additional benefits. Chief among these benefits,

Walktrap and other modularity-based approaches can reliably recover clusters without a

priori knowledge of the number of clusters in the data (Gates, Henry, Steinley, & Fair,

2016; Orman & Labatut, 2009), and in some cases performs better than factor analytic

approaches (Golino & Epskamp, 2017). For these reasons, Walktrap is increasingly used by

psychologists (e.g., Dalege, Borsboom, van Harreveld, & van der Maas, 2017; Jones, Mair,

Riemann, Mugno, & McNally, 2018) and we expect this trend to continue given the

emerging popularity of network psychometrics (Borsboom & Cramer, 2013).

Despite the demonstrated advantages, much like cluster analysis, there are no suitable

fit indices or quality functions a researcher can use to ascertain if a solution is objectively

good (Tonidandel & Overall, 2004). Walktrap performs well in terms of its ability to

recovery the underlying cluster assignments in data when they exist (Gates et al., 2016;

Orman & Labatut, 2009; Pons & Latapy, 2006). However, like all entirely data-driven

approaches, it can sometimes provide cluster solutions even when strong cluster separation
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does not exist (for further discussion about this and community detection in general, see

(Fortunato, 2010; Fortunato & Hric, 2016; Porter, Onnela, & Mucha, 2009; Shai, Stanley,

Granell, Taylor, & Mucha, 2017) . Hence there is a great need for methods capable of

determining if a solution obtained from Walktrap is stable and should be retained. The

present tutorial introduces two general approaches, originally developed in the physics and

neuroimaging literatures, for evaluating the robustness of cluster solutions. The paper also

provides instruction on how to easily implement this approach for cluster solutions

obtained from Walktrap conducted on undirected count matrices.

We begin by defining terminology in order to enable discussion of cluster analysis in

general terms that cut across the diverse data types employed by psychological researchers.

These terms are taken from graph theory literature (Rubinov & Sporns, 2011). At the

foundation of community detection analysis is a symmetric, square matrix that contains

information about how the units of analysis are related. Depending on the literature this

matrix is referred to as a proximity, distance, similarity or adjacency matrix. In the present

paper, this matrix is simply referred to as a “matrix” to facilitate a more general

discussion1. Here, the unit of analysis is called a “node” (or “vertex”). Nodes may

represent variables, people, or brain regions, for instance. The matrix elements themselves

are “edges” and can be weighted (e.g., correlation matrices) or binary (e.g., social

networks). Edges as defined here are equivalent to commonly used terms in other

literatures such as “links”, “ties”, or “connections”. The sum of the edge weights for a given

node is the node “strength”. “Undirected matrices” are bidirectional, for instance when two

people nominate each other as friends in a social matrix study.

We are interested here in two main types of weighted matrices: dense weighted and

sparse count. In dense weighted matrices, most or all of the edges have a weight, such as in

correlation matrices. Sparse count matrices are different in that they contain only positive

1Please note that in the papers informing the present work, the matrix described here is referred to as a
“graph” or “network”. However, based on reviewer suggestions we use “matrix” throughout this paper so as
to not confuse the intended audience of this journal who may not be familiar with these terms.
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integers and the number of nonzero edges is less than the number of nodes (Newman &

Girvan, 2004). While Walktrap performs well on both dense and sparse weighted matrices

(Gates et al., 2016), the matrix evaluation methodology described herein is specifically

tailored to sparse count matrices.

Some examples of symmetric sparse count matrices may help in solidifying these

terms. One example would be data on co-authorship among academics. Here, the nodes

are researchers and edges indicate the number of times each pair of researchers have

co-authored a paper. Results from cluster analyses performed on co-authorship networks

have identified clusters of individuals who commonly work together, with results indicating

researchers have an overall tendency for researchers to publish with those who are in their

own field (Girvan & Newman, 2002). Another type of matrix indexes the number of shared

attributes among pairs of individuals. As with the prior example the nodes represent

individuals. However in this case the edges may represent similarities in aspects of their

dynamic processes as done in Subgrouping - Group Iterative Multiple Model Estimation

(S-GIMME; Gates, Lane, Varangis, Giovanello, & Guskiewicz, 2017). Clustering of this

type of matrix arrives at subgroups (or classifications) of individuals who have similar

temporal multivariate relations (Lane, Gates, Pike, Beltz, & Wright, in press; Price, Gates,

Kraynak, Thase, & Siegle, 2017). Clustering methods can be used on other types of count

matrices as well. Structural neuroimaging data (specifically, diffusion tensor imaging or

DTI) is often cast in terms of count matrices that can be clustered. In this case the nodes

are brain regions and the edges are counts of physical tracts between brain regions

(Bassett, Brown, Deshpande, Carlson, & Grafton, 2011). Clustering this data reveals

subsets of brain regions that tend to be highly connected. As these examples demonstrate,

undirected sparse count matrices are being used to uncover meaningful relations across a

number of diverse data types and research questions.

Regardless which type of matrix used, “cluster solution” in this paper refers to the

community partition obtained from a Walktrap analysis. This solution is a vector of labels
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containing the cluster (or “subgroup” or “community”) assignments for each individual.

We use the term “cluster assignment” to describe the specific cluster a given node is

assigned to. For a given cluster solution, each node may only be assigned to a single

cluster. Good cluster solutions typically separate nodes into clusters with other nodes with

whom they have high edge weights (Radicchi, Castellano, Cecconi, Loreto, & Parisi, 2004).

Ideally, the average edge weight within clusters is higher than those between nodes in

different clusters. Indeed, modularity directly quantifies the total weight of within-group

edges relative to that expected under a particular network model (Newman, 2006). For

social network matrices, that would mean that the individuals have more friends in

common with individuals within their cluster than with individuals outside their cluster. In

brain data, a good cluster solution would mean that brain regions have higher connectivity

with other brain regions in their cluster when compared to their connectivity with brain

regions outside their cluster. Cluster solutions can be said to be robust if the cluster

assignments for the nodes are not due to chance and stable if the overall cluster solution

does not change drastically from minor perturbations (Karrer, Levina, & Newman, 2008).

A cluster solution can only be as good as the data that are used to generate the

matrices. Many things can contribute to a cluster solution not being robust. Perhaps the

features chosen do not adequately separate nodes into subsets. As an example, Gates and

colleagues (2017) investigated the impact of feature selection on the resulting community

assignments when using data simulated to emulate human dynamic processes. Results from

their tests showed that solutions varied greatly based on the features selected to generate

the matrix. Another difficulty in community detection is that the underlying data simply

does not contain clusters regardless of the features selected. Looking at a social network

matrix with the intention of identifying subsets of individuals who tend to co-author

together would be fruitless if all individuals in the sample co-author with similar frequency.

In this way the edge weights would be uniform and random. Here, the best cluster solution

is either one cluster or placing all individuals in their own cluster (both solutions indicate a
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lack of clusters). Due to chance, clustering approaches may still find a solution indicating

clusters even if no clear separation exists in the data (Breckenridge, 2000; Clatworthy,

Buick, Hankins, Weinman, & Horne, 2005). The underlying point is that the robustness of

a solution is dependent on the data: some data simply might not have nodes that strongly

separate into clusters. For these reasons, researchers should evaluate the robustness of their

final solutions to ensure they are not due to chance.

The structure of the paper is as follows. First, a brief overview of common

approaches for evaluating cluster solutions is provided. We then move to describing

approaches that have emerged in other literatures: (1) comparison of the solution obtained

from the original matrix to those obtained in matrices that have had their edge weights

incrementally altered (“perturbed”); and (2) comparison of a relative quality score

obtained from the original solution with the distribution of quality values (“modularity”)

obtained from solutions obtained from random matrices. We then provide instruction on

how these approaches can be conducted via the R (R Core Team, 2017) package perturbR

(Gates, Fisher, & Arizmendi, 2018). Publicly available simulated data is used for the

interested reader. We end the demonstration with four empirical examples to illustrate a

range of robust and non-robust solutions: two social network matrices where the nodes are

individuals and two neuroimaging matrices where the nodes are brain regions. Code and

data examples are available here: https://osf.io/ucj9f/.

Traditional Approaches for Evaluating Cluster Solutions

Unlike other types of analysis (e.g., structural equation modeling, regression),

statistical tests and objective measures are not readily available for evaluating cluster

solutions (Tonidandel & Overall, 2004). This makes it challenging to tell if a given cluster

in a solution objectively contains nodes that are in some way more related to each other

than they are to nodes outside their cluster. However, relative measures exist for

evaluating the quality of cluster solutions as compared to other solutions based on the
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same underlying data (Milligan, 1981). One such measure, modularity, has recently

emerged as a highly useful indication of cluster solution quality (Newman & Girvan, 2004).

Modularity is a quality function that becomes higher in value as the clusters in a given

matrix become more distinct (Newman, 2006). It quantifies the within-cluster edge weights

minus the between-cluster edge weights after controlling for weights that may occur by

chance. In practice researchers tend to consider modularity values above 0.30 to indicate

strong communities (e.g., Meunier, Achard, Morcom, & Bullmore, 2009; Power, Fair,

Schlaggar, & Petersen, 2010). Despite its merits in identifying the best solution from a

subset of possible solutions, modularity has been shown to be unsuitable as an absolute

measure of cluster solution robustness since high modularity can result even in data with

poor cluster separation. Specifically, random matrices (which by definition have no cluster

structure) can sometimes have high modularity in the absence of true clusters (Guimera,

Sales-Pardo, & Amaral, 2004; Kehagias & Pitsoulis, 2013). In a more recent study,

modularity was found to have no relation to the accuracy of cluster assignment recovery in

Monte Carlo simulations (Gates et al., 2016, 2017). Like other metrics used for arriving at

and evaluating optimal cluster solutions (see Mulligan & Cooper, 1985), these findings

suggest that modularity is best used as a relative measure for comparing possible internal

solutions but not as an absolute measure of the quality of cluster solutions.

To overcome this difficulty, researchers sometimes attempt to evaluate their solutions

in a variety of ways. One option is to look at replicate solutions across samples. While this

approach can help identify a solution that should be rejected, a successful replication in

itself does not guarantee the validity of a solution (Aldenderfer & Blashfield, 1984).

Furthermore, it is often unrealistic for researchers to obtain multiple samples. Another

common approach is to analyze the same data with multiple clustering approaches (Henry,

Tolan, & Gorman-Smith, 2005; Morey, Blashfield, & Skinner, 1983). This approach comes

with problems since each method optimizes different criteria and clusters based on different

features of the data (Clatworthy et al., 2005). Additionally, simulation studies indicate
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that clustering approaches have varying degrees of reliability in the methods themselves

(e.g., Gates et al., 2016). As such, differences in cluster solutions could be due to poor

recovery of communities from some of the approaches. The most common approach for

evaluating cluster solutions is cross-validation (Clatworthy et al., 2005). Here, a sample is

often split in half to ascertain if similar clusters are found in both sub-samples. This

approach can be done with matrices by subsetting nodes into two or more matrices, and

then conducting analysis on each of these matrices. A problem with this approach is that

the sample size is reduced, and there are many different optimal cluster solutions that may

occur in these cases (Barbaranelli, 2002; Thompson, 1994). In yet another set of

approaches, researchers test for significant differences between the clusters on the features

upon which they were clustered. For instance, one could ascertain if the within-cluster

average weight is higher than the between-cluster average weight. While intuitive, this

approach tends to always find significant differences and hence is not suitable for

evaluating the robustness of solutions (Aldenderfer & Blashfield, 1984).

Two additional options involve perturbing the original data: jackknife and

bootstrapping. In jackknife approaches (Crask & Perreault Jr, 1977; Snijders & Borgatti,

1999), one node is removed from analysis and the stability of results investigated.

Bootstrapping approaches involve randomly sampling the nodes with replacement (Efron &

Diaconis, 1983) to see how consistently the same cluster assignments are obtained. These

approaches do not suffer from the issues seen in the previous approaches and can be very

helpful in seeing if similar cluster solutions arise when some nodes are left out. A major

drawback noted by Barbaranelli (2002) is that jackknife and bootstrapping techniques

draw all of their data from the same sample (King, 1997). An additional critique is that

the nodes are, by definition, thought to be interdependent in matrices; as such, removing

(or replacing) an entire node will have a cascading effect on the resulting solutions while

also changing the descriptive properties of the matrix.

A final option is to randomly permute cluster assignments and identify with some



CLUSTER ASSIGNMENTS: PERTURBR 10

quality function, such as modularity, if the random assignments reflect the data poorer than

the obtained assignment. The issue with this approach is that many methods for arriving

at cluster solutions (appropriately) maximize a quality function. As such it is known that

the solution provided to the user will have a higher value than any random solutions.

While looking at the distribution of obtained modularity values could be informative, no

clear guidelines exist with regards to thresholds or criteria for identifying poor solutions.

In the psychological literature, there has a been a dearth of new approaches for

evaluating cluster assignment solutions, leaving researchers with very few options to

evaluate the robustness of their findings. The present paper introduces a few methods

taken from the graph theory literature. Before introducing these methods we introduce

Walktrap (Pons & Latapy, 2006), a reliable method for clustering data that will be used as

the basis for the evaluation methods to follow.

Arriving at Reliable Cluster Solutions

It is necessary that clustering approaches provide accurate results in order to evaluate

the robustness of a given solution. Great strides have been made in methods that can

accurately recover the cluster solution for a given set of data among a set of nested

solutions. These advances were sparked by the introduction of the quality function

modularity (Girvan & Newman, 2002; Newman, 2006; Newman & Girvan, 2004). A

number of methods have been developed that maximizes modularity to find the best

partition for a given matrix. These methods, which fall under the umbrella of community

detection algorithms (for reviews, see Fortunato, 2010; Fortunato & Hric, 2016; Porter et

al., 2009; Shai et al., 2017), provide benefit over traditional cluster analysis by not

requiring researchers to specify a priori the number of clusters, or to arbitrarily decide

where the best split occurred.

Simulation studies provide insight into which approaches tend to accurately recover

the data-generating cluster assignments. Much variability exists in terms the reliability of
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clustering approaches. Some methods were developed for very large, binary matrices but

do not always provide reliable results for smaller, weighted matrices. We additionally note

that, for large networks, modularity suffers from a resolution limit (Fortunato &

Barthelemy, 2007), motivating inclusion of a resolution parameter (Reichardt & Bornholdt,

2006) that may then be selected by various methods (see Weir, Emmons, Gibson, Taylor, &

Mucha, 2017). However, we will ignore these issues for the small matrices considered here.

Other methods are not deterministic and can return very different results on the same

data. Still, a number of useful and reliable approaches exist for recovering community

structures. To keep focus, the present paper utilizes one such approach: Walktrap (Pons &

Latapy, 2006). Walktrap is available in the igraph package (Csardi & Nepusz, 2006) and

is used within the perturbR package described here. Prior work on simulated sparse count

matrices has suggested that Walktrap performs well for matrices with diverse data

properties (Orman & Labatut, 2009) including small matrix sizes (Pons & Latapy, 2006)

and when within-group edge weights are relatively small and cluster sizes unequal (Gates

et al., 2016). Here we briefly discuss this approach and refer the reader to additional

resources for more details.

Walktrap (Pons & Latapy, 2006) first recasts the matrix into a new (transition)

matrix and then conducts standard cluster analysis. Specifically, Walktrap begins by

generating a matrix of transition probabilities for each pair of nodes in the user-provided

matrix. Each element of the transition matrix represents the probability of going from one

node to another given node based on a random walk of a certain length (typically 4). The

transition probabilities, which are based on node degrees or strength (i.e., sum of edge

weights from a given node to other nodes), are used to arrive at this distance measure for

each pair of nodes. This places the matrix into metric space much like cluster analytic

methods. A traditional hierarchical clustering technique (Ward’s method; Ward, 1963) is

then applied to this distance matrix, forming communities by minimizing the sum of

squared distances of each node to the other nodes within its own community. Conceptually,
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this approach aims to arrive at communities that have more transitions among nodes

within the same cluster than with nodes outside their cluster. This agglomerative approach

combines nodes into larger and larger clusters until they are all in the same cluster. After

obtaining these partitions, the partition with the highest modularity is selected.

Results from even the most reliable approaches could prove not to be robust given

the qualities of the data. This seemingly paradoxical scenario - that of a method being

reliable yet results not being robust - is not so dissimilar to situations psychologists often

encounter. For instance, conducting regression may be considered a reliable approach in a

statistical sense, but perhaps the inferences change when an outlier in the data is removed

from the sample. Concomitant with the development of community detection approaches

has been the emergence of techniques for evaluating the robustness of results on a given

data set. We now turn to these methods.

Theoretical Foundation of Current Approaches for Evaluating Robustness

Given the issues with previous methods for quantifying robustness of solutions,

researchers in the fields of physics and neuroimaging have provided techniques to aid in

assessing the stability of cluster assignments. These approaches echo the often unheeded

advice of Aldenderfer and Blashfield (1984), who argue that the best approach for

validation is to generate many samples of random data that have the same properties as

the original data and then compare cluster solutions of the randomly generated data to

that of the original.

The first approach to be described here does exactly this. As described by Karrer and

colleagues (2008), the objective is to iteratively and randomly perturb, or alter the value

of, the edges of the original matrix via random replacement of the edge values to arrive at

rewired matrices with similar properties as the original matrix. The process essentially

adds increasing levels of noise to the overall matrix, with a random matrix emerging at the

highest degree of perturbation (see Figure 1). Solutions from the original and iteratively
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perturbed matrices are then compared, both visually and quantitatively.

By creating a random matrix one explicitly uses the notion of a null model in the

evaluation. The second approach used also utilizes these random matrices. Given that

modularity cannot be used in an absolute sense and can be highly influenced by the degree

of sparsity, it is helpful to use the random matrices to arrive at a null distribution of

expected modularity for matrices with similar qualities as the original but lacking a clear

cluster solution. The modularity obtained from the original matrix solution can then be

compared to the distribution found from a series of random matrices (from the null model)

similar to the approach described by Bassett and colleagues (2013). This directly allows for

null hypothesis testing: one can see if the modularity for the original matrix is higher than

expected from a matrix with similar properties but no real clusters.

This set of methods is similar to the approaches described above in that (1) aspects

of the sample are changed and (2) the similarity between the original and altered solutions

are compared. Basing the comparison on random matrices rather than split-sample or

bootstrapped matrices provides substantial benefit and marks the primary difference

between prior approaches used in the psychology literature and the approaches introduced

here. Namely, the approaches described here do not require additional samples for testing

solution stability and keep the number of nodes constant. Furthermore, qualities from the

original matrix are maintained during the subsequent perturbations. The driving heuristic

is that cluster solutions can be said to be stable and robust if the cluster assignments for

the nodes are not due to chance, and the overall cluster solution does not change

drastically from minor perturbations (Karrer et al., 2008).

These approaches follow two guiding principles. First, stable cluster solutions should

be robust to minor perturbations of the matrix edges. That is, if relatively few nodes have

one or two different edge weights than the original matrix, then the cluster assignments for

the nodes as a whole should not change drastically. One would expect, however, some

change in the cluster assignment - particularly for the nodes for whom the edges were
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randomly switched. Perturbing edges leads to a rewired matrix that has some differences in

the edges such that for some individuals their edge strengths are randomly generated.

Importantly, the rewired matrices should be similar to the original matrix in terms of

descriptive properties such as strength distribution. The original matrix solution is then

compared to random matrices with increasing degrees of perturbation.

The second principal is that modularity obtained from the original matrix should be

higher than that seen in random matrices if there truly are distinct clusters in the matrix

(Bassett et al., 2013). As noted above, modularity is not an absolute measure of

community solutions but still may be useful as a relative indicator of solution quality. By

rewiring the matrix in a way that maintains the general features of the original matrix one

can arrive at a distribution of modularity that would be expected from a random matrix

with similar strength distribution as the original to identify if the modularity obtained

from the original matrix is higher than what would be expected by chance.

Application of Current Approaches

Conducting these two approaches requires the generation of new matrices where

edges are randomly perturbed. For approach one, there is a comparison of how different

the community assignments from the rewired matrices are from that of the original matrix.

For approach two, a comparison of modularity obtained from the original cluster solution is

made with a set of solutions obtained from a random matrix. From these approaches, one

can graphically depict how robust the cluster solution is to increasing levels of perturbation

as well as statistically test the quality of the original solution.

The specific steps described in detail below are used for both approaches:

1. Arrive at a cluster solution for the original matrix using Walktrap.

2. Randomly perturb a specific proportion of edges (α) to rewire the original matrix.

3. Obtain a cluster solution for the rewired matrix.
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.

These steps are depicted in Panels 1-3 of Figure 2. For the first approach described

here, Steps 2 through 3 are repeated a pre-specified number of times in increasing

increments of α until 100% of the edges have been perturbed. For the second approach,

only the final matrix with all edges perturbed (i.e., a random matrix) is used.

Having obtained the set of increasingly perturbed matrices, one can plot the degree of

similarity for the cluster solutions found in the original matrix and rewired matrices across

all levels of perturbation. One can also see if the modularity from the original solution is

higher than would be expected from solutions obtained from random matrices. We first

describe the 3 steps common to both approaches before going into detail about the two

approaches and distinct output. Both are provided here as they carry unique strengths.

Thus it is recommended they be used in tandem.

Perturbing Matrices and Obtaining Solutions on Rewired Matrices

The second step requires generating rewired matrices in varying degrees of random

perturbation denoted as α. The random perturbation approach must be appropriate for

the qualities of the data on hand. The present paper (as well as the package perturbR)

focuses on the evaluation of cluster solutions obtained for weighted matrices with positive

integers (i.e., sparse count matrices). It must be strongly noted that the present approach

is not intended for densely weighted, non-integer matrices (such as correlation matrices).

The method for arriving at new matrices with increasing degrees of randomness

stems directly from the Erdos-Renyi (ER) binary random matrix. The ER random matrix

is often used as a point of comparison as it provides a null matrix where edges are

equiprobable across all nodes. It is particularly useful in the present context as these

matrices have no defined clusters. The weighted extension of the ER matrix needs to

provide a set of edges randomly drawn from a given distribution of node strengths.

Considering a matrix A with element Aij representing the edge weight for nodes i and j,
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node strength is the sum of weights for a given node:

si =
∑
j 6=i

wij (1)

where wij is the weight for the edge between nodes i and j. For weighted random matrices,

all nodes need to be statistically equivalent, meaning here that the properties describing

them need to have come from the same distribution. For this reason, Garlaschelli (2009)

introduced an approach which ensures the total weight of the matrix remains constant

across all generated weighted random matrices. This is preferred over methods that only

ensure the same number of edges exist in the matrix since this would not provide similar

properties across weighted random matrices. Note that the present approach for perturbing

matrices differs from that used by Karrer et al. (2008), which retained node degree while

perturbing edges in favor of emulating the null matrix used in modularity rather than a

completely random matrix as used here. To arrive at random weighted matrices, we

consider the weight distribution to geometric with parameter 1− p and the node strengths

to have a negative binomial distribution with parameters N − 1 and 1− p. The probability

of a given edge weight occurring between any two nodes is given as:

q(w) = pw(1− p) (2)

where p is a constant. Defining the total original matrix weight as W = ∑
i<j wij (i.e., the

sum of edge weights in the lower triangle of the matrix), we can now find the optimal

criterion for tuning p:

p∗ = 2W
N(N − 1) + 2W . (3)

One can randomly arrive at edge weights from this distribution using Bernoulli trials with

success probability p∗. Once an edge is randomly selected to be perturbed (at a given α) it

is set to zero. If the first trial is not successful the edge weight remains at ‘0’. However, if
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the first trial is successful it is set to one and the Bernoulli trials continue for that edge.

Each time a trial is successful a ‘1’ is added to that edge weight, stopping once a failure

occurs and moving to the next edge. To generate a completely random weighted matrix,

one would iterate across the entire number of unique edges to arrive at a new set of

weighted edges. This is what we refer to here as a rewired matrix that has had 100% of its

edges perturbed: all possible edges have been perturbed using these Bernoulli trials.

However, since each edge is considered independently we can also use this approach

to perturb only a fraction of edges and arrive at rewired networks with only a portion of

randomly drawn edges replacing the original ones. For example, increasingly perturbing

the number of edges by 1 percent (α = 0.01) increments can be done using this Bernoulli

trial approach. What follows is a brief description of this process intended to further

elucidate what is meant by increasing perturbations.

Figure 1 depicts a matrix undergoing increasing perturbations. Panel A shows a

count matrix where the edges indicate the degree to which the nodes are similar. Empty

areas indicate nodes that have zero-weighted edges. (These nodes were each placed in their

own communities.) The large square towards the center of the matrix represents nodes

placed in the same community. The smaller square in the lower right hand corner contains

edges for nodes placed in a different community. When 33% of the matrix is perturbed

(Panel B) we see some of the individuals who had edge weights of zero in the original

matrix now have higher counts. One clear change is that the edges in the center square

have become lighter and there are more zeros. Additionally, the nodes that previously had

no edges in common with other nodes now have some edge weights. With 66% of edges

perturbed, the edges in the rewired matrix (Panel C) are becoming even more evenly

distributed across nodes with no clear community structure. Finally, in Panel D a

completely random matrix is depicted with 100% (α = 1) of edge weights perturbed.

Step 3 involves conducting Walktrap on each rewired matrix. In summary, Steps 1

through 3 are used for (1) comparing the community assignments obtained from the
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original matrix with those obtained from the rewired matrices and (2) comparing the

modularity obtained from the original matrix to the distribution obtained from random

matrices that have similar properties as the original. We now discuss these two approaches

in turn.

Approach 1: Comparisons of Cluster Assignments

Having perturbed the edges of the original matrix according to the increasingly large

α values we can now compare the rewired matrices’ community solutions with the original

for each repetition at each α level. Two popular methods exist for measuring the degree to

which two community solutions differ: Hubert-Arabie Adjusted Rand Index (ARI) and

Variation of Information (VI).

The ARI (Hubert & Arabie, 1985) assesses the similarity of node cluster assignments

while taking into account what would be expected by chance. Importantly, the ARI does

not require that the two cluster assignments obtained from two solutions use the same

labels. For instance, what is ‘1’ in one solution might be ‘2’ in another solution with both

solutions indicating the identical set of individuals. Rather than quantify these assignments

as being different, the ARI takes into account the proportions of nodes consistently

clustered together in two given community assignment solutions regardless the arbitrary

labels in the solutions. The ARI provides the ratio of similar nodal assignments to the

total number of possible assignments. This can immediately be seen in the original Rand

Index (RI):

RI = a+ d

a+ b+ c+ d
(4)

where each pair of nodes provides a count for either a, b, c, or d. The value a indicates the

number of pairs placed in the same community for both community assignment solutions.

d indicates the count of node pairs that have different cluster assignments in both

solutions. Thus the numerator represents the number of nodes in which community

solutions agreed in their assignments. Both b and c indicate different placement of nodes,
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with the former indicating the counts of node pairs having the same cluster assignment for

the first cluster solution but different cluster assignments for the second cluster assignment

and the latter indicating the opposite. From this equation it is clear the Rand Index is a

ratio of similarities in node assignment patterns to the total possible node assignments. A

drawback of the original RI is that it may be overinflated due to chance. Hubert and

Arabie (1985) provide ARI as a solution by controlling for chance:

ARI =

(
N
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
N
2

)2
− [(a+ b)(a+ c) + (c+ d)(b+ d)]

(5)

The ARI is particularly useful for comparing results across samples since it has an upper

limit of 1.00, which indicates perfect similarity in the two cluster assignments. Lower

values indicate incrementally worse recovery with negative values possible. An ARI of at

least 0.80 is generally considered evidence of similarity in cluster solutions. Another

important quality is that the ARI penalizes for combining two communities into one (i.e.

requires high sensitivity and high specificity) or splitting a community into two smaller

ones (Steinley, 2004). One criticism of the ARI is that non-locality exists. That is, the ARI

for community assignments that differ only in one cluster depends on the cluster

assignment pattern for the remaining nodes. This can result in downward biases in the

ARI computation (Karrer et al., 2008; Meilă, 2007).

The VI (Meilă, 2007) has previously been used to compare cluster assignments

obtained from different data sets such as those described here (Karrer et al., 2008).

Drawing from concepts of information and entropy, the VI considers how much information

each cluster solution has and how much information one cluster solution provides about the

other. Given a total of K clusters in a given solution C, the probability of being in any one

cluster k is:

P (k) = nk
N

(6)

where nk provides the total number of nodes in cluster k and N the total number of nodes
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in the matrix. The uncertainty or entropy of the vector of cluster assignment probabilities

is:

H(C) = −
K∑
k=1

P (k)logP (k) (7)

The entropy value depends on the relative proportions of the clusters assignments, with

zero uncertainty occurring only when there is one cluster. The mutual information of the

cluster solutions, or how much information one solution contains about the other solution,

can be provided as follows:

P (k, k′) = |Ck ∩ C
′
k′|

N
. (8)

The prime indicates results from the second community solution. Of note, much like the

ARI the cluster in the second solution (C ′k′) need not have the same label as the first (Ck).

Hence P (k, k′) provides the probability of overlap of assignments for any given pair of

cluster labels Ck, Ck′ found in the two solutions. With this information the mutual

information associated with the two clusterings C,C ′ can be computed:

I(C,C ′) =
K∑
k=1

K′∑
k′=1

P (k, k′)log P (k, k′)
P (k)P (k′) (9)

Taking together the individual entropies associated with the two cluster solutions H(C)

and H(C ′) and the mutual information that each provides for the other (I(C,C ′)) one can

arrive at the VI:

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′). (10)

The VI complements the ARI. Unlike the ARI the VI is not bound by any limits. While

this may limit interpretability by requiring the solutions be compared in a relative rather

than absolute sense, the VI has properties that make it superior. One, the VI has been

proven to be a true metric by obeying the triangular inequality. This means that it has all

the properties of a proper distance measure. Two, it does not suffer from the problem of

non-locality noted in the ARI. In many cases both the ARI and VI will lead to similar
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conclusions.

The original cluster assignments are compared to solutions obtained from the rewired

matrices using ARI and VI, and these comparisons are typically plotted. The figures depict

the average degree to which the rewired matrix cluster solution matches the original for

each α. Figure 2 provides a graphical overview of the steps taken to compare the cluster

assignments from the original matrix with those from increasingly random matrices. Steps

1 through 3 are done for both approaches; Steps 4 through 6 are specific to this first

approach. In addition to providing the final plot (Figure 2, Panel 6), perturbR also

provides the values for ARI and VI at each level of α for each repetition. More details are

provided below in the section on using the function and manipulating the output.

Approach 2: Comparison of Modularity Values

One can also conduct a statistical test of quality. The second approach uses

modularity, which is an appropriate quality function for arriving at a relative measure of

cluster solution quality. For weighted matrices, modularity is defined as:

Qw = 1
2W

∑
ij

[Aij − sisj
2W ]δij (11)

where δij equals zero if the two nodes i and j are not in the same cluster and 1 if they are,

Aij = wij and provides the weight for the given edge between i and j, si is the overall

strength of node i, and W is the overall weight of the matrix. A noteworthy aspect of this

equation is that it takes into account what would be expected by chance given the nodes’

respective strengths (as seen in the subtraction of sisj

2W ).

Despite its benefits modularity lacks a known distribution and therefore cannot be

used as an absolute measure of fit. As such additional methods are needed to assess the

likelihood that the cluster solution is better than what would be found in a random matrix

with properties similar to the original. As noted above, using Monte Carlo simulations of

data to evaluate cluster solutions has historically been highlighted as a best practice
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(Aldenderfer & Blashfield, 1984). The use of solutions from random matrices as a point of

comparison for modularity when looking across numerous matrices has been used on

neuroimaging data (e.g., Bassett et al., 2013) but has yet to become a readily available and

consistently used approach in psychology at large.

In following this line of work, one can use Monte Carlo simulations to arrive at a

distribution of modularity values obtained from cluster solutions using random matrices

with similar overall weight as the original. Using the traditional probability cutoff of 0.05,

the value in this distribution that corresponds to the 95th percentile would indicate a

threshold for significance. If the modularity obtained from the cluster solution from the

original matrix is higher than this value, then the value is higher than expected by chance

given this distribution.

perturbR

Using the perturbR function

The two emerging approaches described above are available in the freely distributed

perturbR package by using the function of the same name. When describing the use of the

package we utilize publicly available benchmark data

(https://dataverse.unc.edu/dataset.xhtml?persistentId=doi:10.15139/S3/1234) that have

previously been thoroughly evaluated (see Gates et al., 2016, for details). For the purposes

of demonstration here we selected an example that almost perfectly recovered the

data-generating pattern: data set number 60 of Simulation 5. Here, there were 75 nodes,

moderate average node strength, and approximately equally sized groups.

The perturbR() function arguments with defaults indicated are as follows:

1 > perturbR (sym. matrix = exampledata ,
2 plot = TRUE ,
3 errbars = FALSE ,
4 resolution = 0.01 ,
5 reps = 100)
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where sym.matrix is the argument where one indicates the symmetric count matrix

to be used by the function. This matrix must be symmetric and can reflect a number of

phenomenon studied in psychology. For instance, sym.matrix can be a similarity (or

“attribute”) matrix, containing counts of similar symptoms each pair of individuals have,

or a matrix providing counts of fibers between pairs of brain regions, or counts of how often

two pairs of individuals speak to each other.

plot and errbars both pertain to options regarding the figures. The errbars

argument is a logical where users can indicate if they would like error bars in the plots.

The error bars indicate a range of two standard errors above and below the mean values

obtained across repetitions at that given α level.

1 > perturbR (sym. matrix = exampledata ,
2 plot = TRUE ,
3 errbars = TRUE)

.

Figure 3 provides a demonstration of results on the simulated data with the error bar

options invoked. The black circles in Figure 3 indicate the average value for the comparison

between the cluster assignments from the original matrix and the cluster assignments from

the rewired matrix at each level of edge perturbation α. The red triangles indicate the

same comparisons made on a matrix that is completely random but has the same

properties as the original matrix, thus providing an appropriate null matrix for comparison.

This is important for scaling purposes for the VI comparisons (Figure 3B). However,

comparison to random matrix solutions has less utility for the ARI results (Figure 3A)

since the ARI values have absolute (not relative) cutoffs.

To further aid in interpreting the results two horizontal lines are provided. They

indicate the values of similarity found between the original matrix and a matrix where 10%

and 20% of nodes (not edges, as in the rewiring phase) were randomly assigned to different

clusters. As noted in Karrer and colleague’s work (2008) identifying at which α the rewired
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results cross these lines provides insight into interpretation. In a series of empirical

examples, they considered cluster solutions to be robust if the matrix had 20% or more of

its edges perturbed (i.e,. α ≥ 0.20) before intersecting with the line representing 20% of the

nodes being in different clusters. They also note that looking at the distribution of results

helps to guide inferences regarding robustness of the original community solution. This

heuristic has become commonly acceptable and used to evaluate solutions (e.g., Fair et al.,

2009; Gates, Molenaar, Iyer, Nigg, & Fair, 2014; Stevens, Tappon, Garg, & Fair, 2012).

Another option available to users is to manipulate the resolution for the incremental

increases in the proportion of edges that are perturbed (α). Steps 2 through 3 (i.e., rewiring

and arriving at new cluster solutions for the rewired matrices) are repeated across varying

levels of perturbation ranging from default resolution of increments of α = 0.01, starting

from α = 0 (the original matrix solution) to α = 1.00 (a completely random matrix). The

increases in α defaults to increments of 0.01, or 1 percent, but the user can indicate any

number between 0.01 and 0.99 by using the resolution argument. The algorithm will run

quicker with higher proportions, but the granularity of results will suffer. At the final α

level the entire matrix is now random. These steps are iterated at a default of 100 times at

each degree of α. The researcher can alter this option using the reps argument, which

indicates the number of repetitions (i.e., matrices to generate) at each level of α.

Exploring Output

One can look directly at the perturbR output and obtain values related to what is

seen visually. Table 1 provides description of the available output. We now demonstrate

examples of how these output values can be used.

Approach 1: Comparison of Cluster Assignments from Original Matrix to

Increasingly Perturbed Matrices. We begin by demonstrating how the first approach

described above can be explored with the output. One might want to quantify the point at

which the average ARI or VI crosses the 20% line described above. The following
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commands arrive at this point for the VI values:

1 # Run perturb on simulated data
2 > install . packages ( perturbR )
3 > library ( perturbR )
4 > fort5_60 <- as. matrix (read.csv("~/ Sparse Count/ FortData /5_60_fort.csv",

header = F))
5 > fit5_60 <- perturbR (sym. matrix = fort5_60,
6 plot = FALSE)
7 # Obtain the VI value when 20% of the community assignments are randomly

swapped :
8 > fit5_60$ vi20mark
9 [1] 1.453757

10 # Identify the index for the alpha level for the first time the average VI
is greater than this value:

11 > min(which( colMeans (fit5_60$VI)>fit5_60$ vi20mark ))
12 [1] 34
13 # Find alpha that corresponds with this index.
14 > fit5_60$ percent [34]
15 [1] 0.332973
16 # About 0.33 of the edges need to be changed before the VI is as high as

when 20% of the nodes have their cluster assignments randomly swapped .

In this example, about 33% of the edges need to be perturbed before the cluster

solution for the rewired matrix is as different as when 20% of the nodes are randomly

placed into different solutions. This can be seen both by looking at the point where the

black circles intersect with the lower horizontal line in the VI figure and using the code

above. By contrast, a random matrix drops far below this line with only 2% of the edges

perturbed in the rewired matrix. The figures provide an immediate evaluation of cluster

solutions whereas the code and output allow the user to further investigate the results.

It is also possible to examine the average VI and ARI at the 20% perturbation point

and see if it is larger than the these marks. Here we provide an example for the ARI values:

1 > fit5_60$ ari20mark
2 [1] 0.648735
3

4 > mean(fit5_60$ARI[,which(round(fit5_60$percent , digits = 2) == .20) ])
5 [1] 0.7804633

These results indicate that the solutions at this point of perturbation (α = 0.20), on

average, are more similar to the original solution (average ARI = 0.78) than when 20% of
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the cluster assignments are randomly swapped (ARI = 0.65). Conducting a one-sampled

t-test can evaluate if this difference is significant:

1 t.test(fit5_60$ARI[,which(round(fit5_60$percent , digits = 2) == .20)], mu=
fit5_60$ ari20mark )

2

3 [1] One Sample t-test
4 [2] data: fit5_60$ARI[, which(round(fit5_60$percent , digits = 2) == 0.2)

]
5 [3] t = 18.58 , df = 99, p-value < 2.2e -16

We see that the distribution of ARI values at α = 0.20 is significantly higher than the

ARI value obtained with 20% of the cluster assignments for nodes are randomly changed.

Approach 2: Comparison of Modularity Values Obtained from Original

and Random Matrices. The second approach complements the first approach, which

has the drawback of having a rather arbitrary threshold (i.e., 20% of node assignments

switched). The output also provides a value called cutoff which is the modularity value

that marks the upper 5% percentile in the distribution of modularity results obtained from

random matrices that have the same properties as the original matrix.

1 # The modularity value for which 95% of the solutions from random matrices
are below:

2 > fit5_60$ cutoff
3 [1] 0.31
4 # The modularity value from the solution on the original matrix :
5 > fit5_60$ modularity [1 ,1]
6 [1] 0.70

In this example, the cutoff2 was Q.95 = 0.31 and the modularity obtained in this

simulated data set was Qorig = 0.70. Hence the modularity in the original solution was well

above the upper 5% threshold obtained from the random matrix simulation results.

The final panel in Figure 3 depicts a histogram of the modularity values obtained for

solutions in the random matrices simulated to have properties similar to the original

matrix. Researchers can easily obtain similar histograms from the output provided if they

would like to explore how the distribution of modularity from the random matrices
2Note that values may differ slightly for each run do to the random generation of matrices.
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compares to the modularity obtained in the original matrix.

1 > hist(fit5_60$ modularity [,which(round(fit5_60$percent , digits = 2)
==1.00) ], xlim = c(0 ,1))

2 > abline (v = (fit5_60$ modularity [1 ,1]) , col = "red")

Empirical examples

Social Networks

The often used Karate Club social network first introduced by Zachary (1977) is a

classic example in network science literature3. It consists of counts of interactions between

individuals belonging to a university karate club that was undergoing a schism after a

disagreement between club president and karate instructor over the prices. In this matrix,

the nodes represent 34 members of the karate club, including the president and instructor.

The edges are weighted according to the number of interactions between each pair of

members in the club over the course of three years. The dataset is regularly used as a

benchmark with which to demonstrate recovery of true communities with community

detection algorithms, with four clusters (or communities) being the expected outcome. On

this weighted, sparse, undirected matrix, Walktrap recovered the expected four clusters of

individuals (both here and in the original Walktrap paper, Pons & Latapy, 2006). Figure 4

visually depicts the solution obtained on the original matrix in Panel A. This depiction was

obtained using the “plot” function in the igraph package and clearly demonstrates the

four distinct clusters. The robustness to perturbation is depicted in Panels B and C. Here

one can see evidence of robustness in the cluster solution. In both the ARI and VI figures,

on average more that 20% of edges must be perturbed before the difference from the

original solution crosses the line representing the cutoff described above for changes in 20%

of the node assignments. The results from perturbR also provide the 95% cutoff point for

the distribution of modularity obtained for the random matrices. In this case, the cutoff
3The data are publicly available here: http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/zachary.dat.
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point was Q.95 = 0.12. The modularity obtained from the solution on the original matrix

was Qorig = 0.35. Thus according to both approaches - the visualization of differences for

increasing degrees of perturbation and the distribution of modularity from the random

matrices - the results appear to be robust.

The bottom half of Figure 4 depicts results obtained from a different social network:

the Bernard and Killworth Fraternity Data (Killworth & Bernard, 1976)4. The data

represents social interactions among 58 fraternity members who lived in the same house.

The nodes are student members of the fraternity and each edge the number of times the

pair of students were seen in conversation by an unobtrusive observer. The students were

observed every fifteen minutes, 21 hours a day, for five days.

Figure 4D provides the network representation of the nodes. The distinction is not as

clear as previously seen, but this may be because of the method used for plotting as well as

the increase in nodes, so further exploration is warranted. Figures 4E and 4F provide clear

indication that the clusters are not robust. According to both the ARI and VI

comparisons, the cluster solution from matrices perturbed at an α of 0.10 differed from the

original solution more so than if 20% of the nodes had their cluster assignments randomly

changed. Furthermore, the modularity from the original matrix solution, Qorig = 0.02 was

much smaller than the Q.95 = 0.23 cutoff obtained from the random matrix simulations. In

this example one can conclude that no clear clusters exist.

Diffusion Tensor Imaging (DTI) Data

Structural connectivity matrices for the diffusion tensor imaging (DTI) example were

obtained from the UCLA Multimodal Connectivity Database

(http:/umcd.humanconnectomeproject.org), a publicly available database of preprocessed

connectivity matrices from multiple neuroimaging modalities. Example subjects were

randomly selected from a set of 196 subjects from the Nathan Kline Institute

4Obtained from https://networkdata.ics.uci.edu/netdata/html/bkFrat.html
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(NKI)/Rockland sample of the 1000 Functional Connectomes project5. Data were collected

and preprocessed according to previous study protocol (see website for details), and

deterministic tractomatrixy was performed to obtain connection matrices in the form of

sparse count matrices. In deterministic tractomatrixy, the brain is parcellated into distinct

regions of interest with tracts seeded in each voxel of each ROI and fibers counted if they

intersected at least one voxel of the source ROI and one voxel of the target ROI. As is

customary, edges between voxels are not counted if they had an angle greater than 45◦ as

these typically denote different trajectories than the one being quantified. The nodes are

brain regions (N = 188) and the edges the density of fiber tracts (i.e.,the number of tracts

that connect region i with region j). DTI networks are count matrices of the number of

white matter tracts, representing neural axons.

Figure 5 depicts the VI results from these two data sets. For this example, we used

the argument reps = 50 to increase processing speed given the size of these matrices.

Acceptable solutions appear to be found for both matrices, with on average over 25% of the

edges perturbed before the solution is as different as one would expect from randomly

reassigning 20% of the nodes (i.e., the top line). That the results are robust is to be

expected given physiological constraints of the brain and known clusters of brain regions

that exist. Quantitative evidence also suggests robust solutions. The 95% cutoff from the

distribution of modularity values obtained from the randomly generated matrices have

Q.95 = 0.03 for both data sets. The results from the original matrices were Qorig = 0.46 for

both solutions. Hence all evidence suggests these results are robust.

Discussion

The present paper introduced a well-supported set of approaches for evaluating

cluster solutions obtained from sparse count matrices (a type of weighted matrix). We

provided an overview of approaches used in psychology for evaluating cluster solutions and

5Available for download from INDI here: http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
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highlighted the drawbacks. Next, we briefly described one clustering approach, Walktrap

(Pons & Latapy, 2006), that provides accurate and reliable solutions in an entirely

data-driven manner. Researchers do not need to provide the number of clusters a priori

nor select the best cut on a dendrogram - Walktrap arrives at the number of clusters

automatically. Having identified a clustering algorithm that provides reliable results, we

then introduce methods for evaluating the robustness of these results. Robust cluster

solutions should not change drastically with minor perturbations of the data. Finally, we

demonstrate the utility of these approaches on benchmark and publicly available data.

The paper also describes how to easily conduct this analysis using the package

perturbR. First, the algorithm arrives at a cluster solution for the original matrix using

Walktrap. Next, the edges of the original matrix are iteratively perturbed in a manner that

retains the overall matrix properties. Cluster solutions are then obtained for each rewired

matrix using Walktrap. These rewired matrices are used as points of comparisons to

identify: (1) how robust the original cluster solution is to minor perturbations of the

network and (2) if the modularity value obtained on the original matrix is higher than

expected by chance. This is determined by considering the distribution of modularity

values obtained from random matrices lacking a community structure but otherwise having

the same properties as the original matrix.

We demonstrate how to utilize these approaches with simulated data and present

empirical data to highlight the utility of the methods. The simulated data examples

indicate that our approach appropriately found the solutions to be robust and modularity

to be higher than expected by chance for an example matrix that was indeed clustered

correctly. For the empirical examples, we first demonstrate results using the Zachary

Karate Club and Bernard-Killworth Fraternity social networks. Here we saw that small

degrees of perturbation of the Zachary network did not lead to large differences in cluster

solutions. Additionally, the modularity obtained from the cluster solution on the original

matrix was much higher than obtained in random matrices with similar properties. A
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different pattern emerged for the Fraternity data set. Here, small amounts of edge

perturbation led to large differences in cluster assignments. Additionally, the modularity

obtained was smaller than the 95% cutoff seen in randomly generated matrices. We then

demonstrate it’s use on a brain networks, showing that robust cluster solutions were found

for two individuals.

The modular approaches used herein have previously been evaluated. Still, more

work can be done. Results will undoubtedly be influenced by the choice of random matrix

used. As seen in work by Bassett and colleagues (2013), inferences made from comparing

results to random matrices may differ based on the null used. A benefit of the null model

used here is that the resulting matrices are true random matrices. Hence if one wishes to

see if clusters exist it is appropriate to compare the solutions to those obtained from

matrices where no clusters exist. Still, it is possible that other null matrices may be useful

for some research questions. This is particularly true if the matrix being used does not

have the same weight or strength distributions that guide the present approach.

Arguments could also be made for using the degree-preserving approach in Karrer and

colleagues’ (2008) paper. This null matrix aligns with the configuration matrix used when

calculating modularity.

Another area of development would be extensions of these methods for use with

densely weighted matrices, such as correlation matrices. While methods for generating

random correlation matrices exists (e.g., Joe, 2006), due to the interdependence of

correlation values there does not exist, to our knowledge, a method for iteratively

perturbing specific edges as described in the present paper. Specifically, should one

correlation value be changed for nodes i and j, then this has implications for the values

that can occur between i and j with a third node, k. Each edge perturbation done by

simply replacing one edge with a value from a random distribution would render a matrix

having different properties from correlation matrices. More work is needed for this and

other types of densely weighted matrices.
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In research environments the true cluster solutions are unknown. In addition to

evaluating robustness, we suggest that researchers also validate their results using external

variables (as also suggested by Aldenderfer & Blashfield, 1984) to ensure the clusters are

meaningful in addition to being robust. perturbR can help researchers determine if their

cluster solutions are robust. The set of information provided in the output and described

herein provides researchers with additional tools for evaluating such robustness. The

package is easy to use and provides interpretable output in addition to figures that are

ready for publication.
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Table 1. Output values provided by perturbR Note: N indicates number of nodes; reps
indicates number of repetitions (default = 100); nα indicates the number of values at which
rewiring occurs in α increments (default of 0.01); VI = Variation of Information; ARI =
Adjusted Rand Index.

Name Dimension Contents
comm.assign 1 x N Cluster assignments for each node.
VI reps x nα VI values for each repetition across αs for original matrix
ARI reps x nα ARI values for each repetition across αs for original matrix
VI.rando reps x nα VI values for each repetition across αs for random matrix
ARI.rando reps x nα ARI values for each repetition across αs for the random matrix
modularity reps x nα Modularity values for each repetition across αs for original matrix
modularity.rando reps x nα Modularity values for each repetition across αs for random matrix
percent 1 x nα Proportion of edges perturbed at each α
ari10mark 1 ARI value: value for bottom line in figure (see text)
vi10mark 1 VI value: value for top line in figure (see text)
ari20mark 1 ARI: value for top line in figure (see text)
vi20mark 1 VI: value for bottom line in figure (see text)
cutoff 1 Modularity value where 95% of random matrices fall below
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Figure 1 . Example of increasing degrees of perturbation for count matrices.Panel
A depicts an original matrix. A clear cluster can be seen from the dark square, which
represents individuals who have high edge weights. The blank edges represent zeros. Panel
B depicts what the matrix looks like when 33% when the edges of the original matrix are
randomly perturbed. Panel C depicts the matrix with 66% perturbed; the clear cluster
structure is beginning to disappear. Finally, in Panel D every edge in the matrix has been
randomly perturbed. The matrix is completely random.
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Figure 2 . Steps for comparing community assignments between original and
rewired matrices. The color codes in steps 1 through 4 indicate cluster assignments.
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Figure 3 . Example: Results from simulated data. In Panels A and B, Red triangles
represent original random matrices for scaling; black circles represent mean differences
between the perturbed and original matrix solutions; the horizontal lines indicate mean
difference between solutions where 10% (upper line for VI, lower for ARI) and 20% of the
nodes are randomly switched to different clusters. Error bars indicate plus and minus 2
standard deviations from the mean. Panel C depicts the histogram from modularity results
obtained from a random matrix with similar strength distribution as the original matrix.
Here, the red line indicates the modularity of the results from the original matrix.
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Figure 4 . Social Network ResultsPanels A and D depict the cluster solutions results for
the Karate Club and Fraternity social networks, respectively. Panels B, C, E, and F depict
the average differences between the original solution and iteratively perturbed matrices.
Red triangles represent original random matrices for scaling; black circles represent the
original matrices; the horizontal lines indicate difference between solutions 10% and 20% of
the nodes are randomly switched to different clusters. According to both the VI and ARI
about 20% of the edges need to be perturbed before results differ as much as would be
expected if 20% of the nodes were assigned different communities for the Karate Club
network. The Fraternity network does not appear robust according to either the VI or ARI
figures.
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Figure 5 . DTI Structural Brain Data Example Results. Average differences between
the original solution and solutions from iteratively perturbed matrices presented here in
terms of Variation of Information for two individuals separately in panels A and B. Red
triangles represent original random matrices for scaling; black circles represent the original
matrices; the horizontal lines indicate difference between solutions 10% (top line) and 20%
(bottom) of the nodes are randomly switched to different clusters.


