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Robustness Conditions for MIIV-2SLS When the
Latent Variable or Measurement Model is Structurally

Misspecified

Kenneth A. Bollen,® Kathleen M. Gates, and Zachary Fisher
University of North Carolina at Chapel Hill

Most researchers acknowledge that virtually all structural equation models (SEMs) are
approximations due to violating distributional assumptions and structural misspecifications.
There is a large literature on the unmet distributional assumptions, but much less on structural
misspecifications. In this paper, we examine the robustness to structural misspecification of the
model implied instrumental variable, two-stage least square (MIIV-2SLS) estimator of SEMs.
We introduce two types of robustness: robust-unchanged and robust-consistent. We develop
new robustness analytic conditions for MIIV-2SLS and illustrate these with hypothetical
models, simulated data, and an empirical example. Our conditions enable a researcher to
know whether, for example, a structural misspecification in the latent variable model influ-
ences the MIIV-2SLS estimator for measurement model equations and vice versa. Similarly,
we establish robustness conditions for correlated errors. The new robustness conditions
provide guidance on the types of structural misspecifications that affect parameter estimates
and they assist in diagnosing the source of detected problems with MIIVs.

Keywords: 2SLS, MIIV, model implied instrumental variables, robustness, structural

misspecifications

...it is implausible that any model that we uese is anything
more than an approximation to reality. (Browne & Cudeck,
1993, p. 137)

INTRODUCTION

Most researchers readily acknowledge that virtually all struc-
tural equation models (SEMs) are approximations (e.g.,
Browne & Cudeck, 1993; MacCallum, Browne, & Cai,
2007; McDonald, 2010). Two primary sources of approxima-
tion to reality are failures of the distributional assumptions
(e.g., normality) and structural misspecifications. Structural
misspecifications (structural errors) take a variety of forms
such as omitted variables, incorrect latent variable paths,
neglected correlated errors, or even the wrong dimensionality
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Psychology and Neuroscience, University of North Carolina at Chapel Hill,
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of our measures. The consequences of structural misspecifica-
tions are more serious than those of distributional misspecifi-
cations. The widely used maximum likelihood (ML) estimator
in SEM remains a consistent estimator if the only problem is
distributional misspecifications, though significance tests can
be biased (Browne, 1984). In contrast, structural misspecifica-
tions affect both the consistency (e.g., Yuan et al., 2003) and
the significance tests of the ML estimator (e.g., Kolenikov &
Bollen, 2012).

The SEM literature on the consequences of and the
robustness to structural errors is sparse with nearly all exist-
ing work dedicated to the system wide ML estimator (e.g.,
Kaplan, 1989; Kaplan & Wenger, 1993; Yuan et al., 2003;
Yuan, Kouros, & Kelley, 2008). The MIIV-2SLS (model
implied instrumental variable, two-stage least squares) esti-
mator for SEMs (Bollen, 1996) has received far less atten-
tion. Bollen (2001) provides two general conditions on
MIIV-2SLS’s robustness to structural misspecification.
Several other studies (Bollen, Kirby, Curran, Paxton, &
Chen, 2007; Bollen & Maydeu-Oliveres, 2007; Jin, Luo,
& Yang-Wallentin, 2016; Nestler, 2013) provide simulation
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evidence that the MIIV-2SLS estimator is more robust to
structural misspecifications than the more widely used sys-
tem wide (e.g., ML) estimators but do not give general
analytic conditions for robustness. Our goal is to provide
new, specific, conditions of when the MIIV-2SLS estimator
will be robust to structural misspecifications.

In models with structural misspecifications, at least
some of the MIIV-2SLS coefficient estimates are biased.'
No estimator is immune to these problems for all of its
equations. However, particular equations can be robust to
specification errors located elsewhere in the model. It is
important to know which MIIV-2SLS coefficient esti-
mates are robust to structural misspecifications. For
instance, suppose we have great uncertainty about the
specification of the latent variable model, but we have
more confidence in the measurement model specification.
If we use MIIV-2SLS technique, will misspecification
errors in the latent variable model contaminate estimates
of the measurement model? Alternatively, suppose the
latent variable model is well established, but the measure-
ment model is not. Will errors in the measurement model
bias the estimation of the latent variable model?

Bollen’s (2001) general robustness conditions for MIIV-
2SLS, which we describe later, are not designed to char-
acterize possible cross contamination between the latent
variable and measurement models. Indeed, we know of
no study that addresses these robustness questions. The
primary purpose of our paper is to develop new, more
specific conditions for when the MIIV-2SLS estimator of
equation coefficients is robust to structural misspecifica-
tion. We also explain how these robustness conditions help
in diagnosing the source of misspecifications. Our results
are analytical, but we illustrate them with simulated and
empirical data.

In the next section, we introduce the model notation
and assumptions. An overview of the MIIV-2SLS
approach follows. Then, we present a section on robust-
ness conditions that first reviews Bollen’s (2001) general
robustness conditions and second presents new conditions
for the consequences of misspecified latent variable mod-
els for the measurement model and vice versa. We follow
these results with several simulation examples followed
by an empirical example. Finally, we give the conclusions
and implications.

MODEL

We use a slight modification of the LISREL notation (Joreskog
& Sorbom, 2001; Bollen, 2001) to represent the general SEM:

"One possible exception to this claim is if dropping an indicator is
considered a structural misspecification. In that situation, the estimators of
the remaining parameters need not be biased. But this is a less common
meaning for structural misspecification.
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nN=oa,+Bn+Ié+¢
y:ay+Ayn+£ (1)
X =a,+ALH+0

where the first equation gives the latent variable model
and the next two equations give the measurement model.
In the first equation, # is the vector of latent endogenous
variables, & is the vector of latent exogenous variables,
and ¢ is the vector of equation errors or disturbances. The
B matrix gives the expected effects of the latent endogen-
ous variables on each other and the I' matrix gives the
expected effects of the latent exogenous variables (&) on
the latent endogenous variables (n). The @, is the inter-
cept term that gives the expected value of the dependent
variable of an equation when all the right-hand side
(RHS) variables are zero. { contains the errors (distur-
bances) and we assume that £({) =0 and C(§,{) = 0.

The last two equations give the measurement model, where
y is the vector of measures of 1, x is the vector of measures of
¢, a, and a, are the intercept terms, A, and A, are the factor
loadings, and & and J are the unique factors (errors) of the
indicators. The unique factors have means of zero
[E(¢) = 0,E(J) = 0], are uncorrelated with their respective
latent variables [C(g,m) =0,C(g, &) = 0,C(8,¢) = 0], and
the errors and unique factors are uncorrelated with each other
[C(e,0) =0,C(g,{) =0,C(d,¢) = 0]. Note that we do not
make normality assumptions about the observed variables or
errors when using MIIV-2SLS. The MIIV-2SLS is robust to
nonnormality (see Bollen, 1996).

MODEL IMPLIED INSTRUMENTAL VARIABLE
APPROACH

Robustness to structural misspecifications depends on
the estimator. We are using the MIIV-2SLS estimator
from Bollen (1996). Those familiar with it can skip
this section. For others, we describe the MIIV-2SLS
estimator so that the paper is self-contained. The first
step in the MIIV-2SLS procedure is to transform the
SEM in latent variables to an equivalent form in
observed variables. We abbreviate this latent to observed
variable transformation as L20 and briefly describe it in
the next subsection.

L20 transformation

Each latent variable is scaled to one of its indicators by
setting the scaling indicator’s intercept to zero and its
factor loading to one (Bollen, 1989). The vector y con-
tains all indicators of m. We partition y so that all
scaling indicators come first and the nonscaling indica-
tors come second resulting in
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A
y= [y] @)

where y, is the vector of scaling indicators and y, is the
vector of nonscaling indicators. In a similar fashion, we
partition the x vector to get

ol

an

with analogous definitions.
The equations for just the scaling indicators are

Yo =1 + &

We can reexpress these equations as

— — &
i-x—s ©)

Substituting this equation into the equations of Equation
(1), we get

Y, =an + By, +I'x;+& — Bg, —To,+¢
Vs = Oypns T AynsYs — Ayns€s + &ns (6)
Xns = Ox s + Ax,nsxs - Ax,nsas + 5ns

(3% 1}

where the “s” subscript refers to vectors (matrices) corre-
sponding to the scaling indicators and “ns” signifies vector
(matrices) of nonscaling indicators. Moving from Equation
(1) to Equation (6) in observed variables is the L20
transformation.

In the observed variable form, it is typical to have the
composite error correlate with variables on the RHS of the
equation.  For  example, the composite error
(¢, — Be; — T'd; + {) in the first equation in Equation (6)
generally correlates with some elements of y, and X,
because the errors of these scaling indicators are part of
the composite error. The correlation of the error with the
RHS variables rules out ordinary least squares (OLS)
because this biases the OLS estimates. Bollen (1996,
2001) shows that an instrumental variable estimator is
applicable. Perhaps more importantly, Bollen (1996) shows
that in general an identified SEM has sufficient instruments
among the observed variables already in the model. These
are the model implied instrumental variables (MII'Vs) for the
MIIV-2SLS estimator.

Estimators

The L20 transformation and the procedure for finding MIIVs
enable a variety of instrumental variable estimators. Bollen

(1996) developed the MIIV-2SLS while Bollen, Kolenikov,
and Bauldry (2014) proposed the generalized method of
moments (GMM) estimator [MIIV-GMM]. Other instrumental
variable variants are possible. We focus on MIIV-2SLS because
it is better known and because MIITV-2SLS is likely more robust
than other multi-equation estimators.

Details on the MIIV-2SLS estimator are in several places
(e.g., Bollen, 1996, 2001; Bollen et al., 2007). Here, we illustrate
the method with the latent variable model in Equation (6).
Consider the jth equation from this L20 version of the latent
variable model:

Yi=aj+ By + ixg +u (7

where y; is the jth dependent variable from y,, a; is that
equation’s intercept, B;andI'; are the jth row in B andT,
respectively, and u; is the jth element of u, where u is the
composite error term.

To put this into a more convenient form with which to
present the MIIV-2SLS estimator, let y; and u; be N x 1
vectors of the values for the jth equation dependent vari-
able and composite residual, respectively.” Define Ajasa
column vector of coefficients that has a; and all the
nonzero elements of B;jand I'; stacked in a column. Let
Z; be an N row matrix with 1s in the first column and the
N row elements of y, and x; that have nonzero coeffi-
cients for the equation in the remaining columns. Then
we can rewrite Equation (7) as

Vi =ZA; + u; (®)

To estimate the coefficients in A; collect all the MIIVs for
the jth equation into an N row matrix ¥; with a vector of
Is in the first column and the values of the MIIVs for the
jth equation in the remaining columns where
j=1,2,3,...,J and J is the total number of equations
in the model. The MIIV-2SLS estimator of coefficients is
lar series of steps would hold to find the MIIV-2SLS
estimator of the factor loadings and intercepts from the
measurement model.

As discussed elsewhere (e.g., Bollen, 1996), the MII'V-
2SLS estimator is a consistent and asymptotic unbiased
estimator of the coefficients for a correctly specified
model. A concern of ours is when does the MIIV-2SLS
remain a consistent estimator of the coefficients of an
equation when there are misspecifications in other equa-
tions. Prior to turning to this issue, we have a brief
discussion on MIIVs.

2 Note that ; below equation (7) refers to a single value while y; in the
footnoted sentence refers to all N x 1 values of this variable.



MIIVs

Finding the MIIVs is an important part of the MIIV-2SLS
procedure. For each equation in Equation (6), the MIIVs are
those observed variables that would be uncorrelated with the
composite disturbance of that equation if the model of interest
were valid. In other words, the MIIV approach uses the model
structure to determine those observed variables that are uncor-
related with the disturbances. Of course, the model needs not
be correct and there are test statistics to determine the lack of
correlation between the MII'Vs and composite errors as implied
by the model structure (Kirby & Bollen, 2009).

The MIIVs for a given equation should satisfy several
conditions: (a) the MIIVs (F;) should be uncorrelated with
the composite error of the equation (x;), (b) the MIIVs (V)
should correlate with the explanatory variables (Z;), and (c)
the rank of V}Z i equals the number of columns in Z; (e.g.,
Bollen, 1996, p. 114). An identified SEM has observed
variables that are uncorrelated with the composite error of
each equation and satisfies the preceding conditions. See
Bollen (1996) for more details. SAS and Stata procedures
are available for finding MIIVs (Bollen & Bauer, 2004;
Bauldry, 2014) and the R package MIIVsem (Fisher,
Bollen, Gates & Ronkko, 2017) can be used to find MIIVs
and estimate the model parameters using MIIV-2SLS.

ROBUSTNESS CONDITIONS FOR MIIV-2SLS

General robustness to structural misspecification

We define two different meanings of “robust.” Consider the
coefficient 4 where the subscript j indexes the J equations in
the model with j =1,2.3,...,J and k indexes the parameter
in the jth equation where k = 1, ..., K;, with Kj; the total number
of coefficients in the jth equation. To avoid repetition and more
notation, we use the coefficient vector 4; in a general fashion so
that it refers to the coefficients of an L20 equation from either
the latent variable or the measurement model. The MIIV-2SLS
estimator of 4y is A and we use A; without the & subscript to
reference all coefficients in the jth equation as we did earlier. The
symbol M, refers to a model with no structural misspecifications
in any equation, M references a second model with at least one
structural misspecification, and M, denotes a third model with
different structural misspecifications than M;. The parameters of
all three models can be nested or nonnested.

We also propose two different types of robustness to
structural misspecifications. Robust-unchanged occurs
when /Ijk (or Aj) takes the same value for a given pair of
models. Robust-unchanged permits structural misspecifica-
tions in both models, for instance M; and M., or just one, as
when comparing M, and M;. This is in harmony with the
idea that models are approximations and as such we might
be comparing two models each of which involves structural
misspecifications or is approximate. The only requirement
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for robust-unchanged is that A}k (or Aj) is the same value
when comparing two models.

Robust-consistent occurs when fijk (or Aj) remains a
consistent estimator under at least two different models
(M, and M,, My and M;, or My and M;). The MIIV-2SLS
estimator A . (or Aj) is a consistent estimator of 4 (or A;) if
plim(Ay) = Aj]. The MITV-2SLS estimator is a consistent
estimator for the correct model M, for all coefficients and all
equations (e.g., Bollen, 1996). Furthermore, the MIIV-2SLS
estimator might be a consistent estimator of 4 (A;) under
some M or M,. The MITV-2SLS estimators Ay (A;) will be
consistent in model M; if equation j is correctly specified
and the MIIVs chosen using M, are the same or are a subset
of the MIIVs obtained using M, (Bollen, 2001). One excep-
tion to the requirements of a correctly specified equation is
when there are omitted variables that are uncorrelated with
the included variables of the equation. Note also that robust-
consistent implies robust-unchanged, but not vice versa. In
other words, the MIIV-2SLS estimator can be robust-
unchanged for an equation but not robust-consistent because
both equations produce the same inconsistent estimator.

Distinguishing between robust-unchanged and robust-
consistent is important for at least two reasons. First,
these definitions of robustness allow us to consider
approximate models that contain errors, a situation that
is typical. Our equation can fall short of perfection and
hence have MIIV-2SLS not be a consistent estimator, yet
the estimator might still be useful or close to consistency.
Without prejudging the validity of the model structure,
we can say something about whether structural misspeci-
fications elsewhere in the system affect our estimates of a
specific coefficient (/f_,-k) or all coefficients (A_,—) in a parti-
cular equation. This holds even when the particular equa-
tion contains specification errors. Second, knowing that
the MIIV-2SLS /fjk (or Aj) is robust-unchanged to a
certain set of structural misspecifications means that if a
test for structural errors [such as the Sargan’s (1958) test]
reveals a potential problem in the equation, then we can
rule out these misspecifications as the source of the pro-
blem. In other words, if the MITV-2SLS 4j (or A)) is
robust-unchanged in M; and M,, then we know that the
structural misspecifications that distinguish M, from M,
are not the source of misspecification. We need to look
elsewhere for the structural errors.

The only robustness conditions for the MIIV-2SLS esti-
mator of which we know are from Bollen (2001). He
describes two conditions for the MIIV-2SLS to be robust-
consistent to structural misspecifications: (1) the equation of
interest is correctly specified and (2) the list of MIIVs for
the equation of interest remains the same whether the other
equations are correctly or incorrectly specified.

The first condition requires that there is not an omitted
variable or other structural misspecification in the equation
to estimate. For example, if an equation omits a variable that
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correlates with the included RHS variables, the remaining
coefficients are likely to be adversely affected.’ The second
condition asks us to consider the list of MIIVs we would
obtain for a given equation when the whole model is cor-
rectly specified and the list of MIIVs when it is not. If the
list of MIIVs is identical, then the MIIV-2SLS estimator for
a given equation is robust-consistent to the structural mis-
specifications. The robust-consistent status of one equation
can differ from that of another in the same model and under
the same structural misspecifications. For this reason, we
cannot generalize about robustness of MIIV-2SLS for one
equation based solely on the robustness of another equation.

These conditions are a valuable first step in that they can tell
us whether to expect robustness for a given correctly specified
equation. But they do not tell us when the MIIV-2SLS is robust-
unchanged, a weaker condition of robustness that is more applic-
able to approximate models. These general robust-unchanged
conditions do tell us about consistency when the MIIVs stay the
same across the correct and structurally misspecified models.
They do not, however, give us general conditions for when we
can expect the MIIVs to be the same. We develop new condi-
tions that generalize to larger parts of the model such as whether
structural misspecifications in the latent variable model affect the
MIIV-2SLS estimator for equations from the measurement
model. Or under what conditions will our MITV-2SLS estimator
of the latent variable model parameters be robust-unchanged to
structural misspecifications in the measurement model? These
questions are relevant because they can help us find the general
location of specification errors when the MIIVs correlate with
the composite error for a particular equation. The conditions we
develop are devised so that 4 (Aj) are robust-unchanged and
are applicable to approximate as well as exactly valid equations.
In those cases where consistency of the MITV-2SLS holds, our
same conditions are robust-consistent. It is to these issues that we
turn.

Robustness of measurement model to misspecified
latent variable model

The robustness question of this section is whether structural
misspecifications in the latent variable model
M = ay +Bn +I'¢ + 0) alter the MIIV-2SLS estimator of
coefficients for equations from the measurement model.
Answering this question is valuable in several ways. First,
rather than focusing on a single equation, we would rather
have conditions that apply to all equations in the measure-
ment model. In other words, if we develop a general result
for this issue, we do not need to check individual equations
and can be confident in the robustness of all equations from
the measurement model.

3 An omitted variable that is uncorrelated with all included variables is a
rare exception.

Answering this question is also important when we find a
poorly fitting equation in the measurement model because
we have overidentification tests for each overidentified
equation (Bollen, 1996; Kirby & Bollen, 2009). These test
whether all MIIVs are uncorrelated with the equation error
(as they will be in the population if the model structure is
correct). Kirby and Bollen (2009) found that the Sargan
(1958) overidentification test works reasonably well across
different sample sizes and thus is the test used herein.
Rejection tells us that misspecification in the model is likely.
If the Sargan’s test rejects the null hypothesis that the MIIVs
are uncorrelated with the composite error, then the question
is where to look for the misspecification. If we can for the
first time establish that structural misspecifications in the
latent variable model do not influence the MIIVs for the
measurement model, we know an unfavorable test statistic is
due to structural misspecifications in the measurement
model rather than in the latent variable model.

Our starting point is to describe the two general types of
structural misspecifications in the latent variable model that
we consider: (1) BorI' have incorrect fixed to zero or freed
coefficients and (2) covariance matrix of ¢ has incorrect
fixed or free parameters. Condition (1) occurs when latent
variables are omitted or needlessly included in one or more
equations from the latent variable model. Condition (2)
happens when equation errors ({’s) correlate but are fixed
to zero or when covariances of errors or their variances are
needlessly introduced.

Having described these two general types of structural
misspecifications in the latent variable model, we turn to the
question of whether these conditions affect the selection of
MIIVs for the measurement model. Below, we repeat the
L20 equations for the measurement model,

Yius = Qs + Ay,nsyg - Ay,nsgs + &ns (9)

Xns = Ox ps + Ax,nsxs - Ax,nsas + 6ns '
The MIIVs for an equation in the measurement model are
selected because they are uncorrelated with the composite
disturbance of that equation. Condition (1) stipulates that the
wrong latent variables are included or excluded from one or
more of the latent variable equations. This would manifest
itself in incorrect B or I' matrices.

We consider whether changes in Bor I' affect the MIIVs
for a given equation in the measurement model. In general,
the MIIVs are those observed variables that are not directly
or indirectly influenced by the composite errors of a given
equation. We can see this by either deriving the direct and
indirect effects of the error using algebraic methods such as
in Bollen (1987) or by tracing effects of the errors in a path
diagram. In addition, any observed variables that are
directly or indirectly influenced by an error that correlates
with the composite error are ineligible to be a MIIV for that
equation (Bollen, 1996). In Equation (9), note only mea-
surement errors are part of the composite errors



(— Ay us&s + &g, —Ay g0 + 0y5).  Furthermore, measure-
ment errors only have direct effects (no indirect effects) on
their respective indicators. This means that indicators whose
errors are included in the composite error cannot be MII'Vs.
The only other observed variables eliminated are those that
have an error (unique factor) that correlates with any errors
that are part of the composite error. The pattern of fixed and
freed elements in either BorI' has no effect on the MIIVs
because these elements cannot change the direct effects of
the composite errors or the direct effects of any measure-
ment errors that correlate with the composite errors.
Moreover, changes in the pattern of fixed and freed elements
in the covariance matrix of ¢ cannot change the direct
effects of the composite errors or the correlated measure-
ment errors from the L20 form of the measurement model.
Based on these results, we reach the following conclusion:
the MIIV-2SLS estimator of any measurement model coeffi-
cient is robust-unchanged to structural misspecifications of
using the wrong pattern of fixed or freed elements in either
BorT or using the wrong covariance matrix of ¢ in the
latent variable model.

We can test whether all MIIVs are uncorrelated with the
error of an equation as long as we have more MIIVs than
the required minimum (e.g., Kirby & Bollen, 2009). An
implication of our preceding finding is that if we find a
measurement equation that fails the test, the failure is due
to the measurement model specification and not to the
specification of the latent variable model. In other words,
we should seek structural misspecifications in the measure-
ment model and not in the latent variable model if we fail
the overidentification test for a measurement equation. We
now turn to a different question. Is the MIIV-2SLS estimator
of the latent variable model robust to structural misspecifi-
cations in the measurement model?

Robustness of latent variable model to misspecified
measurement model

In this section, we consider two general types of measurement
model misspecification: (1) Covariance matrices of & s OT &y ;5
have incorrect fixed or free parameters and (2) A, ,; or A, ,shave
incorrect fixed or free parameters. Condition (1) happens when
there are excluded correlated unique factors or incorrect con-
straints on variances of the unique factors of the nonscaling
indicators. Condition (2) occurs when we fail to include direct
effects from one latent variable to one or more indicators or
needlessly include a factor loading that is zero in the factor
loading matrix.

The L20 form of the latent variable model that we
estimate is
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Y, = aq + By, +I'x; + & — Bg, — I'o + (. (10)

To determine the robustness of the MIIV-2SLS estimator
of Equation (10), we look at each type of structural mis-
specification and determine whether the set of MIIVs for a
latent variable equation is influenced by the
misspecification.

As was true previously, any observed variable that is
directly or indirectly influenced by any error from the
composite error for an equation is ineligible to be a
MIIV for that equation. Furthermore, any observed vari-
able that is directly or indirectly influenced by an error
that correlates with the composite error is also ineligible.
MIIVs are altered as a result of structural misspecification
when the set of observed variables which are directly or
indirectly influenced by the composite error change as a
result of this misspecification. We start with condition (1).
The structural misspecification under condition (1)
includes omitting correlated errors (uniquenesses) among
the nonscaling indicators (&, O & ,5). Examination of
the composite error in equation (10) reveals the absence
of any nonscaling unique factors. Hence, the failure to
properly model correlated uniquenesses has no effect on
the selection of the MIIVs for the latent variable model.
In other words, MIIV-2SLS estimates of the latent vari-
able model parameters are robust-unchanged to the mis-
specification of covariances among the errors of
nonscaling indicators.

Condition (2) is more complicated to analyze. We first
consider the situation where a factor loading to a nonscaling
indicator is incorrectly assumed to be zero. That is, a latent
variable influences a nonscaling indicator but the model
incorrectly omits that path. Because the unique factor of
the scaling indicator’s only effect is its direct effect on the
scaling indicator, these scaling indicator’s unique factors
have no consequences for the selection of MIIVs when
there is an omitted factor loading to a nonscaling indicator.
Therefore, we can ignore this part of the composite error.

The only remaining term in the composite error is {. This
term is more complicated than the unique factors in that ¢
can have indirect effects on more than one observed variable
in the model. For instance, consider the causal chain of
iy —m; — 1, in Figure 1. The error term (g;) for m,
indirectly affects all of the indicators of n; and all of the
indicators of n,.

Leaving out the path labeled, 4 is a misspecification of
the measurement model. Applying the L20 transformation,
the 1, equation is,

Y1 =g, +ypx1 — 01 +eer +§ (11)
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FIGURE 1 Illustration of misspecified measurement models with omitted cross-loadings. Solid and dashed lines comprise the data-generating model; dashed

lines represent those omitted in the misspecification.

with MIIVs of x; and x, If we now use the correct model
including the m; — ys path, the L20O transformation is the
same as are the MIIVs, x; and x, In other words, the MIIV-
2SLS estimator of the latent variable equation for m; is
robust to this omitted path in the measurement model.
Furthermore, we could demonstrate that MITV-2SLS estima-
tion of the n, latent variable equation is also robust to this
omitted path in the measurement model.

In contrast, now look at Figure 1b. The misspecified mea-
surement model here omits the path labeled B. Interestingly, the
L20 transformation and MIIV-2SLS estimation of the 1, latent
variable equation are robust to this omitted path, just like we
found for the first misspecified equation. But a different story
emerges for the 1, latent variable equation. The L20 transfor-
mation leads to,

Yo =0y + Py —fner tea+ G (12)

with MIIVs x;, x3,17, and y3. However, in the true measure-
ment model, there is an indirect path from §, — 1, — »,
and this leads y, not to be a MIIV. Therefore, this second
type of misspecification leaves MIIV-2SLS to be robust for
the first latent variable equation but not for the second latent
variable equation.

Generalizing from this example, if the omitted cross-
loading when present creates a nonzero indirect path from
the latent variable equation error () to one or more of the
MIlVs from the misspecified model, then the MIIV-2SLS
estimator is not robust-unchanged. Alternatively, if the
omitted cross-loading when present does not create a

nonzero indirect path from the latent variable equation
error () to one or more of the MIIVs from the misspecified
model, then the MIIV-2SLS is robust-unchanged.

There are useful implications of these robustness condi-
tions. If an equation from the latent variable model fails an
overidentification test, then we know that this failure is not
due to omitted correlated uniquenesses among the nonscal-
ing indicators. However, if we look toward the measurement
model, the failure could be due to particular omitted factor
loadings. We can determine candidates for this omitted
factor loading by considering those initial MIIVs that
might be indirectly influenced by the equation error (the {
for the equation).” Though this does not pinpoint the offend-
ing variable, it can narrow down the search.

Before closing this section, we briefly mention two other
robust-unchanged conditions to add to the first two condi-
tions of when a misspecified measurement model will not
alter the MIIV-2SLS estimates for the latent variable model.
The third one focuses on correlated errors for the scaling
indicators for those latent variables that are part of the
equation of interest: The MIIV-2SLS estimator is robust-
unchanged to the omission of correlated unique factors for
the scaling indicators of latent variables that are included in
the latent variable equation. The reason is that these scaling
indicators that are part of the L20 transformed version of
the latent variable equation are excluded as MIIVs to start

40f course, a misspecified equation in the latent variable model also is
a possibility.



with and this is true whether their unique factors correlate or
not. For example, suppose in a latent variable equation,
latent variable one directly affects a second latent variable
two. In the L20 transformation, the scaling indicators of
these two latent variables and their respective unique factors
will appear and hence rule both variables out as MIIVs.
Whether the unique factors of these two scaling indicators
correlate or not makes no difference because they are
already not part of the MIIVs. This condition is particularly
useful with longitudinal models where correlated errors are
likely.

Finally, a fourth condition expresses the robustness of the
MIIV-2SLS estimator of a latent variable equation when a
researcher drops observed variables from an analysis. The
MIIV-2SLS is robust-unchanged to: the omission of any
observed variable that is not part of the L20O transformed
equation or is not among the MIIVs for that equation.
Though obvious when pointed out, this does provide
another type of robust-unchanged condition involving drop-
ping observed variables from an analysis and when the
MIIV-2SLS estimates remain unaltered.

SIMULATION ILLUSTRATIONS

The preceding analytic conditions tell us when MIIV-2SLS
is robust and are more comprehensive than any simulation
design. However, simulated data are helpful in illustrating
the robustness conditions when we know the true structure.

Robustness of measurement model to misspecified
latent variable model

To illustrate the robustness of the measurement model to
misspecification of the latent variable model, we generated
1000 observations using the correctly specified model (M)
in Figure 2. We then estimate the MIIV-2SLS coefficients
for the correct and incorrect latent variable models (M)
using MIIVsem (Fisher et al., 2017). The analytic results
predict that the factor loadings coefficients will be identical
under either specification. Table 1 shows that the coefficient
estimates are the same.

Robustness of latent variable model to misspecified
measurement model

Here, we illustrate the effect of two different measurement
model misspecifications (e.g., M; or M,) on the MIIV-2SLS
latent variable parameter estimates in Figure 3. Again, we
generated 1000 observations under the correct model and
found the MIIV-2SLS estimates for both the correct and
incorrect model specifications.

The estimated coefficients for the first example (see
Figure 3a) are in Table 2. These results also confirm the
previous analytic results, as the estimates of y,; and f,, are
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FIGURE 2 Misspecified latent variable model. Solid and dashed lines
comprise the data-generating model; dashed lines represent those omitted in
the misspecification.

robust to the omission of cross-loadings and covariances
amongst the unique factors. It is worth mentioning even if
we mistakenly omit correlations amongst the unique factors
of the scaling indicators these estimates would still be
robust.

In the second example (M,), we again examine the
impact of omitted correlations among the unique factors
and omitted factor loadings (see Figure 3b). Now, y; loads
on both n; and n,. Unlike the previous example, this creates
an indirect effect from {, to ys;, making y; an ineligible
MIIV for the second structural equation under the true
specification. Including y; as a MIIV due to model misspe-
cification biases the parameter estimate for $,, and Table 3
shows that the estimate of £, is 20% too large.’

> Fortunately when y; is incorrectly included as a MIIV in the 1,
equation, the Sargan’s test (Kirby & Bollen, 2009) correctly rejects the
null hypothesis(y> = 105, p<0.001), detecting that at least one of the
MIIVs correlates with the error.
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TABLE 1
Measurement Model Estimates Under Correct and Incorrect
Specification of Latent Variable Model (N = 1000)

Latent Variable Model Specification

Parameter Population Correct Incorrect
Ay 1 1.00 1.00
Ays 1 1.00 1.00
Ays 1 1.00 1.00
Ays 1 0.99 0.99
Ay 1 1.00 1.00
Ayy 1 1.02 1.02
Ay 1 0.99 0.99
A 1 1.00 1.00

EMPIRICAL EXAMPLE

To demonstrate these concepts, we present a series of models
based on the industrialization and political democracy example
initially presented in Bollen (1989). The data contain informa-
tion on 75 developing countries from 1960 (“industrialization”
and “political democracy” variables) as well as 1965 (“political
democracy”). The model has three indicators of industrializa-
tion and the same four indicators measure political democracy
in both years. With real empirical data, we do not know the true
structure. But these data have the benefit of having been
evaluated for a specific model in terms of its appropriateness,
interpretability, and model fit. Specifically, we can examine
misspecifications against the “original” baseline model

TABLE 2
Measurement Model Estimates for Misspecification in Figure 3a

Latent Variable Model Specification

Parameter Population Correct Incorrect

A 1 1.05 1.05

P 1 1.03 1.03
TABLE 3

Latent Variable Coefficient Estimates Under Correct and Incorrect
Measurement Model Specifications in Figure 3b

Latent Variable Model Specification

Parameter Population Correct Incorrect
An 1 1.02 1.02
P 1 0.97 1.20

wherein industrialization in 1960 (¢;) predicts political democ-
racy in years 1960 and 1965, and political democracy in 1960
(n) predicts political democracy in 1965 (,; see Figure 4).
First, we investigate robustness to misspecification of the
latent variable model. Here, one path is omitted (see Figure 4a)
which induces a causal chain wherein &; predicts #; that in turn
predicts 7,. Table 4 presents the estimates of the measurement
model. As can be seen, the factor loadings are identical when
estimated with the original or the causal chain model. Given

G

FIGURE 3 Misspecified measurement models. Solid and dashed lines comprise the data-generating model; dashed lines represent those omitted in the

misspecification.
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FIGURE 4 Political democracy and industrialization models. Solid and dashed lines comprise the data-generating model; dashed lines represent those

omitted in the misspecification.

TABLE 4
Measurement Model Estimates for the Original and Misspecified
(i.e., Causal Chain) Models

TABLE 6
Measurement Model Estimates Change in Comparison to the
Original Model (Table 4)

DV EV Estimate Std. error Sargan df P(Chi)
Va m 1.227 0.168 18.863 8 0.016
3 " 0.986 0.129 10.155 8 0.254
Va m 1.178 0.131 14.884 8 0.061
Yo 1 1.086 0.157 20.569 8 0.008
V7 2 1.132 0.137 13.767 8 0.088
Vs 2 1.149 0.144 15.301 8 0.054
X3 & 2.078 0.128 8.301 8 0.405
X3 & 1.751 0.149 8.738 8 0.365

Original ~ Original std.  Causal chain Causal chain
DV EV  estimate error estimate std. error
y2 m 1.139 0.179 1.139 0.179
yi om 0.969 0.140 0.969 0.140
ya m 1.210 0.139 1.210 0.139
Yo M2 1.051 0.165 1.051 0.165
Vi om 1.180 0.151 1.180 0.151
ys M 1.203 0.154 1.203 0.154
x & 2.078 0.128 2.078 0.128
x5 & 1.751 0.149 1.751 0.149
TABLE 5

Latent Variable Estimates for the Original and Misspecified
Measurement Model Where Correlations Among Indicator Variables
are Removed

Original Original std.  Misspecified  Misspecified std.
DV EV  estimate error estimate error
m < 1.261 0.426 1.261 0.426
mn & 1.123 0.312 1.123 0.312
noom 0.724 0.101 0.724 0.101

Note. Estimates remain identical despite measurement model
misspecification.

that the estimate for the relation between &; and #, is significant
(see Table 5) and the Sargan test is marginally significant for
equation 7,, including this path as is done in the original model
appears to be warranted.

Next, we turn to measurement model misspecifications.
As depicted in Figure 4b, the correlations among the unique

factor of the indicator variables for political democracy are
removed. One might expect these errors of the indicators to
be correlated from 1960 to 1965; hence, the removal of
them is referred to as the “misspecified model” herein. In
following the analytic and simulation results, the latent
variable model estimates were robust to this misspecifica-
tion (see Table 5). However, in the measurement model,
only the factor loading estimates for the industrialization
latent variable are robust-unchanged for the misspecified
model, though the change in the other loadings are small
and the equation for two variables fail the Sargan test
(Table 6).

CONCLUSIONS

There is growing recognition of the importance of under-
standing structural robustness of estimators. This paper
advances our knowledge of robustness of structural
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TABLE 7
Summary of New Robustness Conditions for Structural
Misspecifications Using the MIIV-2SLS Estimator

The MITV-2SLS estimator of the coefficients of the measurement model is
robust-unchanged to structural misspecifications in the latent variable
model.

The MIIV-2SLS estimator of the coefficients of the latent variable model is
robust-unchanged to having the incorrect covariance matrices among the
unique factors (errors) of the measurement model for the nonscaling
indicators.

The MIIV-2SLS estimator of the coefficients of the latent variable model is
robust-unchanged to omitted cross-loadings as long as the omitted
nonzero cross-loadings when present do not create indirect paths from
the latent variable equation error to one or more of the MIIVs from the
misspecified model.

The MITV-2SLS estimator of the coefficients of the latent variable model is
not robust-unchanged to omitted cross-loadings if the omitted cross-
loadings when present create nonzero indirect paths from the latent
variable equation error to one or more of the MIIVs from the
misspecified model.

The MIIV-2SLS estimator of the coefficients of the latent variable model is
robust-unchanged to the omission of correlated unique factors (errors)
for the scaling indicators of latent variables that are included in the true
latent variable equation.

The MIIV-2SLS estimator is robust-unchanged to the omission of any
observed variable that is not part of the L20 transformed equation and
is not among the MIIVs for that equation.

misspecifications of the MIIV-2SLS estimator by deriving a
number of new robustness conditions. Table 7 provides a
summary of these.

Among other things, we established that structural mis-
specification in the latent variable model does not affect the
MIIV-2SLS estimates of the measurement model. We
showed that omitted correlated errors of the nonscaling
indicators in the measurement model do not affect the
MIIV-2SLS coefficient estimates of the latent variable
model. The story of omitted factor loadings is more com-
plicated. As explained in the text and in Table 7, sometimes,
the MIIV-2SLS coefficient estimates of the latent variable
model are robust-unchanged, sometimes not.

Our new conditions are established for coefficients to be
robust-unchanged so that we can accommodate the widely
accepted view that models are approximations. We also men-
tioned the idea of robust-consistent for MIIV-2SLS estimates
that remain consistent estimators of the parameters under two
different models. Our conditions for robust-unchanged carry
over to robust-consistent with the added proviso that the equa-
tion of interest is correctly specified and the MIIVs for that
equation stay the same with or without the structural misspeci-
fications that are elsewhere. Of course, with real data, the true
equation is unknown. However, we have the Sargan (1958) test
of whether the MIIVs in an overidentified equation are uncorre-
lated with the composite error. Failure of the test indicates failure

of the model to lead to a consistent estimator of the equation’s
coeflicients. Our robustness conditions suggest where to look for
modifying the model.

One implication of our results ties to the one-step versus two-
step estimation debate that periodically occurs in the SEM
literature (e.g., Anderson & Gerbing, 1988; Hayduk & Glaser,
2000; Mulaik & Millsap, 2000). The debate concerns whether to
estimate the measurement model prior to building the latent
variable model versus simultaneously estimating both models
together. Our results show that if a researcher uses the MIIV-
2SLS estimator to tackle the measurement model first, then the
results of the measurement model are not influenced by the latent
variable model. Hence, a researcher who wants to concentrate on
the measurement model first knows that structural misspecifica-
tions in the latent variable model do not alter the measurement
model coefficient estimates in the MITV-2SLS context.

A related implication is that some authors have advocated
that the measurement model should be fit first and the latent
variable second (McDonald, 2010; McDonald & Ho, 2002).
They suggest this strategy because of their concern that the
overall fit measures from the usual full information estimators
like ML might mask the poor fit of the latent variable model by
having a good fitting measurement model. Consistent with this
claim, O’Boyle and Williams (2011) find that roughly half the
studies in organizational research had a good fitting measure-
ment model masking a poorly fitting latent variable model. If
we use the MIIV-2SLS estimator, we can test the fit of indivi-
dual equations from either the latent variable or measurement
model and would be less likely to miss a poorly fitting latent
variable model due to a good fitting measurement model
because each overidentified equation has its own test statistic.
As this suggests, it is possible to perform local tests of model fit
rather than a single global fit measure. With the local tests of fit
for MITV-2SLS, a researcher can better determine those equa-
tions in the model that cause the most problems. And the
robustness conditions we propose could prove helpful in locat-
ing the sources of bad fit.

Our results also are useful in interpreting the results of simu-
lation studies that look at MITV-2SLS. Our analytical conditions
enable us to predict when estimates will be unchanged and when
they will be altered by a structural misspecification. These
analytical conditions should work with the polychoric instru-
mental variable estimator as well (e.g., Bollen & Maydeu-
Oliveres, 2007; Jin et al., 2016; Nestler, 2013). This means that
we do not need to use simulation studies to predict robustness
but can use these analytical results.

Our robustness conditions could be extended in several direc-
tions. For instance, further examination of which estimates
would change from which equations when dropping variables
from an analysis could be done by checking whether the MIIVs
for an equation change. It also should be possible to extend these



results to the MIIV-GMM (Bollen et al., 2014) when multi-
equations are estimated rather than a single equation. We hope
that this paper provides a foundation upon which to further our
understanding of if, when, and where misspecifications affect
SEM estimates.
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