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Modeling the relationships among brain regions of interest (ROIs) carries unique potential to explicate how
the brain orchestrates information processing. However, hurdles arise when using functional MRI data.
Variation in ROI activity contains sequential dependencies and shared influences on synchronized activation.
Consequently, both lagged and contemporaneous relationships must be considered for unbiased statistical
parameter estimation. Identifying these relationships using a data-driven approach could guide theory-
building regarding integrated processing. The present paper demonstrates how the unified SEM attends to
both lagged and contemporaneous influences on ROI activity. Additionally, this paper offers an approach akin
to Granger causality testing, Lagrange multiplier testing, for statistically identifying directional influence
among ROIs and employs this approach using an automatic search procedure to arrive at the optimal model.
Rationale for this equivalence is offered by explicating the formal relationships among path modeling, vector
autoregression, and unified SEM. When applied to simulated data, biases in estimates which do not consider
both lagged and contemporaneous paths become apparent. Finally, the use of unified SEM with the
automatic search procedure is applied to an empirical data example.
ll rights reserved.
© 2010 Elsevier Inc. All rights reserved.
Introduction

Connectivity mapping provides insight into how the brain
orchestrates information processing. “Effective connectivity” maps
in particular glean valuable information by identifying the influence
that one region of interest's (ROI) activity may have on another
(Friston and Stephan, 2007). In this manner, effective connectivity
mapping attempts to establish causal directions of regional activity.
The majority of current statistical techniques for assessing effective
connectivity with functional MRI data identify either contemporane-
ous or lagged effects, which is problematic since both must be
considered simultaneously for unbiased estimation.

Each of the various statistical methods used to model effective
connectivity begin by obtaining representative time series from
anatomically or statistically identified ROIs (see Goncalves and Hall,
2003). Path diagrams fit by means of structural equation modeling
(SEM) appear to be the most straightforward application and more
common approach. Here, covariance patterns of contemporaneous
blood-oxygen-level dependant (BOLD) time series illustrate brain
functioning via directed pathways (McIntosh and Gonzalez-Lima,
1994). Outside of the general linear model approach, dynamic causal
modeling (DCM) uses deterministic differential equations to assess
how regions relate and estimate external modulation of connections
(Friston, 2007). DCM attempts to include neuronal-hemodynamic
activity in the model, making the model perhaps the most
comprehensive to date (Sarty, 2007).

A third approach, vector (or “multivariate”) autoregression (VAR),
estimates the influence that data from ROIs at previous time points
have on a given ROI's BOLD activity (Penny and Harrison, 2007). The
use of VAR represents an important development in connectivity
mapping for two reasons. One, BOLD activity contains sequential
dependencies (Harrison et al., 2007) and VAR takes into account these
autocorrelations (Shumway and Stoffer, 2006). Two, to be able to
make causal inferences between ROIs, at minimum, temporal
ordering must be established, i.e., a cause cannot occur later than its
effect (Roebroeck et al., 2005). VARs identified by means of Granger
causality offer an improvement upon DCM by not requiring a priori
selection of directional associations among ROIs. Granger causality
necessitates that including past information from one ROI offers a
statistically unique contribution in explaining variance in a second
ROI which is better than using solely the second ROI to predict itself
(Goebel et al., 2003).

In what follows we review a fourth approach, the unified SEM
approach of Kim et al. (2007) to model contemporaneous and
sequential relationships among ROIs, and present several extensions.
In particular, we introduce a new automatic search procedure to
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identify optimal unified SEM models based on Lagrange multiplier
testing. This automatic search procedure constitutes a powerful
alternative to Granger causality testing in VAR modeling (Goebel et
al., 2003). Additionally, the formal relationships among SEM path
modeling, VAR, and unified SEM are explained and illustrated with
applications to simulated and empirical data.

Methods

Unified SEM

Typically, SEM path modeling assesses contemporaneous relation-
ships among ROIs. However, since biological mechanisms have
sequential dependencies, connections estimated from solely contem-
poraneous path models may be biased (Harrison et al., 2007). In
complement, VAR modeling assesses lagged relationships while
neglecting to account for contemporaneous relationships among
BOLD signals. Each approach could be improved by simultaneous
consideration of both the contemporaneous and lagged effects. Kim et
al. (2007) recently offered a solution which combines SEM path and
VAR modeling into a “unified SEM”. In this way a powerful integrated
approach to the unbiased statistical estimation of fMRI connectivity
mapping is obtained which allows for: (1) SEM path modeling of
contemporaneous connectivities among ROIs while accommodating
the presence of sequential dependencies, (2) VAR modeling of
sequential connectivities while accommodating the presence of
contemporaneous relationships among ROIs, and (3) simultaneous
path and VAR modeling of contemporaneous and sequential relation-
ships. In the present paper we provide an empirical demonstration that
the statistical models underlying SEM path and VAR models can be
derived as specific instances of unified SEM, for which an automatic
search procedure exists. We then illustrate the relatedness of these
approaches aswell as the biases inparameter estimations that canoccur
whenmodels fail to consider both contemporaneous and lagged effects.

Automatic optimal model search

Most current approaches for connectivity mapping require spec-
ification of connections among ROIs prior to estimation. Noting that
optimal representations of underlying networks and effective connec-
tivity may be best obtained using exploratory methods, a number of
automated procedures have been developed to construct and identify
the best fitting connectivity maps. For SEM models, the general
approach is to specify, estimate, and compare all possiblemodels (or at
least a large selection of plausiblemodels) to obtain the best fitting one
(James et al., 2009; Zhuang et al., 2005). For VAR models, Granger
causality tests are used to select models that identify regions that are
driving or are driven by activation in a set of reference regions (Goebel
et al., 2003). A striking andpreviously overlooked feature of the unified
SEM is that an optimal model may be established without prior
specification of contemporaneous and lagged paths. We introduce a
new automatic search procedure for identifying optimal unified SEM
models of fMRI data based on Lagrange multiplier tests. The method
provides a robust alternative to the previous approaches in that it
accommodates both contemporaneous and lagged effects, and, similar
to the selection procedures used for Granger causality testing in VAR
modeling (Goebel et al., 2003), model construction requires statistical
improvement for each contemporaneous and lagged path.

Formal specification of SEM path models

Given a p-variate time series η(t) of ROI BOLD activities, pN1, path
models can be fit which identify contemporaneous connectivity
among these ROIs by means of SEM:

η tð Þ = Aη tð Þ + e tð Þ ð1Þ
where A is a (p,p) matrix with zeroes along the diagonal and ɛ(t)
denotes a p-variate residual series. Off-diagonal coefficients Aik, i≠k,
i,k∈{1,2,…,p}, denote directed paths among ROIs ηi(t) and ηk(t). Let
Σ=var[η(t)] and Δ=var[ɛ(t)] be the (p,p)-dimensional covariance
matrices of η(t) and ɛ(t), respectively. Please note that Δ is a diagonal
covariance matrix in order to guarantee unique parameter estimates.
Then the path model is fitted to Σ as

X
= Ip−A

� �−1
Δ Ip−At
� �−1 ð2Þ

where Ip is the (p,p)-dimensional identity matrix and the superscript t
denotes transposition. Model fits usually are obtained bymeans of the
method of maximum likelihood given the assumption that observa-
tions are multivariately normally distributed (Penny and Harrison,
2007).

Formal specification of vector autoregression (VAR) models

VAR models can be used to obtain connectivity maps that identify
sequential relationships among the BOLD activities of ROIs. Given a
time series, η(t), representing pN1 ROIs of BOLD activities, sequential
relationships among their BOLD activity can bemodeled bymeans of a
VAR of order q, VAR(q)

η tð Þ = Φ1η t − 1ð Þ + : : : + Φqη t − qð Þ + f tð Þ; ð3Þ

where ζ(t) is a p-variate residual series.
Vector autoregression models can also be fit by means of SEM.

Taking VAR(1) as an example, define 2p-variate supervectors ηt=
[η(t)t, η(t+1)t] and ζt=[0t, ζ(t+1)t], where 0 is the p-variate zero
vector. In addition, define the (2p,2p)-dimensional matrix Φ consist-
ing of four (p,p)-dimensional blocks Φ ik, i,k=1,2: Φ11= Ip,
Φ12=Φ22=0p, where 0p is the (p,p)-dimensional zero matrix, and
Φ21=Φ1, the (p,p)-dimensional matrix of autoregression coefficients
in the VAR(1) η(t+1)=Φ1η(t)+ζ(t+1). Accordingly, the VAR(1)
can be rewritten as the SEM

η = Φη + f: ð4Þ

As is demonstrated below, reformulating VARs as SEMs opens up
the possibility to make use of the option to automatically identify
sequential relationships among ROIs using a recursive procedure
offered by LISREL software (Jöreskog, 1997).

Formal specification of unified SEM

Kim et al. (2007) present a unified SEM approach to connectivity
mapping that identifies both contemporaneous and sequential
relationships among the BOLD activities of ROIs. Given a p-variate
time series η(t) of BOLD activities associated with pN1 ROIs, we can
combine Eqs. (1) and (3) into the following combination of path
model and VAR(q):

η tð Þ = Aη tð Þ + Φ1η t − 1ð Þ + : : : + Φqη t − qð Þ + f tð Þ: ð5Þ

Taking VAR(1) as an example, define the 2p-variate supervectors
ηt=[η(t)t, η(t+1)t] and ζt=[0t, ζ(t+1)t], where 0 is the p-variate
zero vector. In addition, define the (2p,2p)-dimensional matrix Β
consisting of four (p,p)-dimensional blocks Βik, i,k=1,2: Β11= Ip,
Β12=0p, Β21=Φ1, and Β22=A. Accordingly, the combined path
model and VAR(1) can be rewritten as a unified SEM in LISREL
notation as

η = Bη + f: ð6Þ
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This model allows for unbiased estimation of contemporaneous
and lagged association by considering both simultaneously.

Unified SEM using automatic Lagrange multiplier testing

The reformulation of the combined path and VAR(q) as a SEM
permits automatic identification of the minimum number of directed
path coefficients for the Φk matrix, k=1,…,q, and the A matrix using
LISREL (Jöreskog and Sörbom, 1992). Using the generalized Lagrange
multiplier test, the automatic search procedure constitutes an
alternative to standard tests of Granger causality which is based on
ratios of determinants of residual processes as described inGoebel et al.
(2003). Lagrange multipliers help identify which path, if freed, would
maximally improve the chi-squared goodness-of-fit when compared
to the less parameterized model. The chi-squared goodness-of-fit
statistic is the likelihood ration of the model against the observed
covariancematrix. According to Chou and Bentler (1990), the Lagrange
multiplier test is appropriate regardless of the type of parameter being
tested. SEM presents an alternative to Granger causality applicable for
both contemporaneous and sequential relationships.

LISREL can be programmed to automatically carry out Lagrange
multiplier tests by iterative model estimation without prior specifi-
cation of contemporaneous or lagged relationships. The automatic
procedure starts by fitting an empty path model to the data. Next,
generalized Lagrangemultiplier tests indicate the directed path that, if
added, would maximally improve the likelihood ratio test. The
procedure automatically frees this path for estimation and fits the
new model to the data, after which the generalized Lagrange
multiplier test again determines the directed path which would
maximally improve the likelihood ratio test if added to the path
model. These steps are repeated until none of the modification indices
reach statistical significance at a pre-specified alpha level (Jöreskog,
1997). Appendix A provides mathematical explanation of the
Lagrange multiplier test.

Formal relationships among path modeling, VAR, and unified SEM

In this section the following formal key relationships will be
considered: (a) each unified SEM can be transformed to an equivalent
VAR; and (b) each VAR can be transformed to an equivalent unified
SEM, using as an intermediate step SEM path modeling of the
covariance matrix of the residual process in the VAR. The relationship
between the unified SEM and VAR enables the use of the Lagrange
multiplier test as an alternative to the widely accepted Granger
causality tests in a model that considers both lagged and contempo-
raneous effects. For objective (b), we work in reverse to demonstrate
how to acquire unbiased contemporaneous and sequential pathways
using results from the VAR model. This may be a practical and
equivalent alternative approach to the unified SEM for researchers.
Notice that objective (b) allows for the a posteriori transformation of
published results obtained by means of VAR modeling.

a) Transformation of unified SEM to an equivalent VAR. Given the
unified SEM (Eq. (7)), which for clarity of presentation is truncated
to include only lagged associations of order 1, consider the
following transformation:

η t + 1ð Þ = Aη t + 1ð Þ + Φ1η tð Þ + f t + 1ð ÞY
η t + 1ð Þ = Ip−A

� �−1
Φ1η tð Þ + Ip−A

� �−1
f t + 1ð Þ ð7Þ

where Ip is the identity matrix, Φ1 the autoregressive coefficient
matrix, and A the coefficient matrix for contemporaneous paths.
We define (Ip-A)-1Φ1=Φ1⁎ and (Ip-A)-1ζ(t)=ζ⁎(t). Then the
right-hand side of Eq. (9) can be rewritten as η(t+1)=Φ1⁎η(t)+
ζ⁎(t), which is a VAR(1).
For the unified SEM (Eq. (7)), cov[ζ(t), ζ(t)t]=Ψ, which is a
diagonal (p,p)-dimensional matrix. For the residual process ζ⁎(t) in
the equivalent VAR(1) model resulting from the above manipulation
it holds that: cov[ζ⁎(t), ζ⁎(t)t]=[(Ip-A)-1Ψ(Ip-At)-1], which repre-
sents a full covariance matrix associated with contemporaneous
paths. This completes the formal transformation of a unified SEM
model (Eq. (7)) to an equivalent VAR(1) model (Eq. (3)).

b) Transformation of a VAR to an equivalent unified SEM. Given is the
VAR(1) η(t+1)=Φ1⁎η(t)+ζ⁎(t), using the same notation as in
(a). As an intermediate step, the (p,p)-dimensional covariance
matrix of the residual process ζ⁎(t) is subjected to a SEM path
analysis according to Eq. (2): cov[ζ⁎(t), ζ⁎(t)t]=(Ip-A)-1Ψ(Ip-At)-1.
This SEM path analysis recovers the matrix A as well as the
diagonal (p,p)-dimensional covariance matrix Ψ of the residual
process ζ(t) in the unified SEM (Eq. (7)). In the final step, the Φ1⁎

matrix is transformed by pre-multiplication with (Ip-A) in order
to obtain the Φ1 matrix in Eq. (7): Φ1=(Ip-A)Φ1⁎. This concludes
the transformation of a VAR into a unified SEM.

Results: Simulated data

Unified SEM with automatic search applied to simulated data

The present example will use the Lagrange multiplier test
automatic procedure to estimate paths according to the unified SEM
given by Eq. (8) on simulated data with p=4. The following
parameter specifications produced the data:

A =

0 0 :7 0
0 0 :7 0
0 0 0 0
0 0 :7 0

2
664

3
775

Φ1 =

:8 0 0 0
0 :8 0 0
0 0 :8 0
:5 0 0 :8

2
664

3
775

The covariance matrix of ζ(t) is I4. The ROIs will be referred to as ROI
1, ROI 2, ROI 3, and ROI 4 in order from left to right across thematrices.
For instance, the matrix specifications for A and Φ1 created the data
such that the coefficient for ROI 1 regressed on ROI 3 is .7 after taking
into account the sequential relationships of .8 for ROI 1 on itself.

Appendix B contains a LISREL program for fitting the unified SEM
using the automatic procedure. The LISREL user's reference guide
(Jöreskog, 1997) provides detailed explanation of LISREL notation. The
procedure conducts forward-selection in that it selects the best path
accounting for the influence of previously selected paths, beginning
with the empty path model. For this reason, paths estimated early in
the iterative proceduremay become non-significant as other paths are
added. Recall that for the present example the A matrix is a 4×4
matrix in the lower right hand corner and Φ is the lower left hand
4×4 corner of the LISREL beta matrix.

Table 1 lists the parameters in the Bmatrix in Eq. (8) automatically
freed in accordance with the iteratively applied Lagrange multiplier
test. Of note, the program chose β(8,5) to be the first contempora-
neous parameter estimated. β(8,5) corresponds to the coefficient for
ROI 4 regressed on ROI 1 and was not specified in the unified SEM
model used to create the data. However, ROI 4 at t+1 regressed on
ROI 1 at t was specified in the unified SEM model (via the Φ matrix)
used to create the data. Once the model selected this parameter to be
estimated, the estimate for β(8,5) became non-significant and
remained non-significant (t=0.33) in the final model. Refitting the
model with β(8,5) constrained to zero resulted in a final model with
an excellent fit (χ2=7.01, p=.93) that recovers the true parameter
structure used to create the variables (Fig. 1). This exercise



Table 1
Fits for models found using the automatic Lagrange multiplier tests using simulated
data example.

Model Newly estimated Beta χ2 Significance

1 None 1393.52 pb .001
2 8,4 982.75 pb .001
3 6,3 711.39 pb .001
4 5,1 443.25 pb .001
5 8,5 321.55 pb .001
6 7,3 219.49 pb .001
7 5,7 130.16 pb .001
8 6,7 48.66 pb .001
9 8,7 33.13 pb .001
10 8,1 6.91 0.91
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demonstrates that the automatic procedure can identify the true
model without prior knowledge. We achieve this by first obtaining
models in which each new path significantly improves the model and
then trimming non-significant paths.
Equivalences among contemporaneous path model, VAR, and
unified SEM

The formal relationships among contemporaneous path modeling,
VAR, and unified SEM are explored here on the simulated data
described above. We first estimate a VAR using the automatic search
procedure. It is shown that parameter estimates from the VAR model
contains biases arising directly from contemporaneous influences. In
the process of recovering the unbiased unified SEM estimates for the
lagged and contemporaneous paths using the formal relationships
explicated above, the simulated data example also demonstrates the
biases in contemporaneous paths resulting frommodels which do not
account for lagged relationships. Then, with knowledge of the
unbiased contemporaneous paths and the biased VAR estimates, we
indicate how one arrives at unbiased estimates of both contempora-
neous and sequential relationships. This final, crucial, step opens up
the possibility for researchers to transform previously published VAR
results into unbiased unified SEM estimates. Lagrange multiplier tests
using the automatic search option in LISREL assisted in arriving at the
final model fits for each step. The formal relationships among these
three models are shown to hold when estimated in this manner,
strengthening the claim that use of this automatic procedure
constitutes a powerful approach in identifying optimal fMRI connec-
tivity maps with no prior specification.

We now present the illustration of the transformation of a VAR to
an equivalent unified SEM. These data were simulated according to a
unified SEM as described above, but a VAR(1) is fitted to these data.
Fig. 1. Unified SEM diagram and corresponding beta matrix for simulated data example. Not
relationships denoted by solid lines. All relationships are significant at the pb .05 level. (b)
Thus, some of the variation in these ROIs results from contempo-
raneous influence, similar to what has been demonstrated in
empirical data (Kim et al., 2007). One can recover the coefficients
found in a unified SEM by manipulating the results from the VAR
analysis.

Accordingly, we estimated a VAR(1) model using the automatic
procedure in LISREL described above. After iteratively estimating 10
models the final model containing 8 regression estimates (after
trimming) has an excellent fit (χ2=4.92, p=.77):

ΦT
1 =

:79 0 :51 0
0 :81 :45 0
0 0 :70 0
:55 0 :54 :78

2
664

3
775

Note that the coefficients inΦ1⁎ in the fitted VAR(1) do not follow the
same pattern as those for the Φ1 matrix in the unified SEM used to
simulate the data. Apparently VARmodels erroneously estimate some
variance explained by contemporaneous influences as lagged rela-
tionships. This bias highlights the need for the unified SEM approach
when attempting to make valid causal inferences.

From this analysis we acquire the ζ⁎(t) residual covariance matrix
which, as described above, contains the information regarding the
covariance structure of the contemporaneous relations A as well as
the covariancematrix of the residual process in the unified SEM. Using
cov[ζ⁎(t), ζ⁎(t)t] as input data for a SEMpathmodel fit as intermediate
step, we apply the automatic procedure to obtain the A matrix. The
final model produces coefficient weights equivalent to those obtained
for the A matrix in the unified SEM model underlying the simulated
data (see Fig. 1) for ROI 1, 2, and 4 regressed on ROI 3. The path
coefficients in A obtained in the intermediate SEM path analysis are,
respectively: 0.72, 0.66, and 0.67.

In the final step, the Φ1⁎ in the fitted VAR(1) is transformed to
obtain the Φ1 matrix in the unified SEM: Φ1=(I4-A)Φ1⁎, using A
obtained in the intermediate step. Table 2 displays the estimate of Φ1

obtained in this final step, as well as (to aid comparison) the estimate
of Φ1 obtained in the fit of the unified SEM (above section).
Comparison of (a) the Φ1 matrix derived algebraically by fitting the
VAR and using the resulting ζ⁎(t) covariance matrix to estimate
contemporaneous relations with (b) the Φ1 matrix obtained with the
unified SEM reveals nearly identical results. Any differences are likely
due to rounding effects during the transformation procedure. Please
note that this formal illustration of the relatedness among SEM path,
VAR, and unified SEM necessitates having adequate power to
appropriately model each component.

For completeness, SEM path diagrams of contemporaneous
relations also were fit via the iterative search procedure to the
original covariancematrix of the same simulated data: cov[η(t), η(t)t].
e: (a) Diagram of lag(1) relationships represented by dotted line and contemporaneous
Corresponding beta matrix obtained from LISREL.



Table 2
Φ1 matrices obtained algebraically from VAR(1) and unified SEM approaches.

ROI 1(t) ROI 2(t) ROI 3(t) ROI 4(t)

Φ1 Obtained algebraically beginning with VAR(1)
ROI 1(t+1) 0.79 0.00 0.01 0.00
ROI 2(t+1) 0.00 0.81 -0.01 0.00
ROI 3(t+1) 0.00 0.00 0.70 0.00
ROI 4(t+1) 0.55 0.00 0.07 0.78

Φ1 Obtained using unified SEM
ROI 1(t+1) 0.79 0.00 0.00 0.00
ROI 2(t+1) 0.00 0.81 0.00 0.00
ROI 3(t+1) 0.00 0.00 0.70 0.00
ROI 4(t+1) 0.57 0.00 0.00 0.77

Table 3
Fits for models found using the automatic Lagrange multiplier tests using empirical
individual example.

Model Newly estimated Beta χ2 Significance

1 None 677.56 pb .001
2 LPFC1b -RPFC1 517.35 pb .001
3 LACC1b -LPFC1 390.10 pb .001
4 RPFC1b -RPFC 282.33 pb .001
5 RACC1b -LACC1 222.25 pb .001
6 RACC1b -RACC 185.31 pb .001
7 RPFC1b -LACC 158.62 pb .001
8 RPFC1b -RACC1 107.74 pb .001
9 RPFC1b -RACC 88.59 pb .001
10 RPFC1b -LPFC1 69.21 pb .001
11 LACC1b -RPFC1 57.79 pb .001
12 RPFC1b -LPFC 50.10 pb .001
13 LACC1b -LPFC 44.64 pb .001
14 LACC1b -LACC 14.40 p=.11
15 LACC1b -RPFC 6.97 p=.54

Note. ACC=anterior cingulated cortex and PFC=prefrontal cortex. The prefixes of
L=left and R=right. Abbreviations ending in “1” denote the time series at one scan in
the future.
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The matrix of contemporaneous paths thus obtained yields an
unsatisfactory fit (χ2=9.95, df=1):

A =

0 :5 0 0
0 0 :7 :2
0 0 0 0
1:7 0 0 0

2
664

3
775

Note that the contemporaneous model estimated from the original
covariance matrix contains phantom paths which do not exist given
the specifications used to simulate the data. Importantly, the
contemporaneous model estimated using the residual covariance
matrix from the VAR model arrived at appropriate coefficient
estimates given the covariance structure of the original covariance
matrix obtained directly from the data.

Methods and materials: Empirical data

In what follows we demonstrate the utility of the automatic search
procedure for unified SEM first on an individual's fMRI BOLD activity.
Next, we apply this method to a group to demonstrate feasibility at
this level. Data were drawn from a larger study which examined
working memory functioning among healthy controls and traumatic
brain injured subjects. Subjects completed the n-back task during
acquisition, a task widely used in the cognitive neurosciences to
examine working memory functioning (see D'Esposito et al., 1998;
Smith and Jonides, 1999; Wagner et al., 2001). All subjects used in the
present analysis were healthy controls. The subject used in the
individual analysis was a 22 year-old male. This subject was included
in the group analysis (n=4; 75% female; all Caucasian), for which
there was a mean age of 31 (SD=13.0, range=21–49).

MRI data were collected using a Philips 3 T system and a 6-channel
SENSE head coil (Philips Medical Systems, Best, The Netherlands).
First, 3-D high resolution T1-weightedMPRAGE imageswere acquired
for presenting functional activations with the following parameters:
repetition time (TR) 9.9 ms, echo time (TE) of 4.6 ms, and flip angle
(FA) 8° with a 240×204×150 mm3

field of view (FOV). Echo planar
imaging (EPI) was used for functional imaging. Imaging parameters
for EPI consisted of: TR 2000 ms, TE 30 ms, FA 89°, FOV
230×230 mm2, 80×80 acquisition matrix, and 34 4-mm thick axial
slices with no gap between slices.

Data processing was conducted using SPM5 (Friston et al., 1995)
software and included realignment of functional data to the first
functional image using affine transformation (Ashburner et al., 1997).
Functional images were also co-registered to the T1 MPRAGE and all
data were normalized using a standardized T1 template from the
Montreal Neurological Institute, MNI, using a 12 parameter affine
approach and bilinear interpolation. Following normalization, scans
were smoothed with a Gaussian kernel of 8×8×10 mm3. The BOLD
response during task simulation was examined by comparing BOLD
signal change during 20-s experimental blocks against baseline (i.e.,
fixation) using a t-test, a minimum cluster level of 10, and a statistical
threshold set at pb .001. Data from the peak voxels in selected ROIs on
the right and left side were extracted using theMarsBar toolbox (Brett
et al., 2002).

Results: Empirical data

Having demonstrated the ability for the automatic search
procedure utilizing Lagrange multiplier tests to correctly identify
the model, we next applied this procedure to empirical data to
illustrate the applicability of this approach for modeling both
individuals and groups. We first obtained a connectivity map for an
individual and then a separate one for the group. Both maps
ascertained the coordinated network underlying working memory
performance elicited from the task described above. Research
examining basic information processing (e.g., working memory)
consistently find increased activity in the anterior cingulated cortex
(ACC) and prefrontal cortex (PFC) in clinical and healthy samples
(Hillary et al., 2006; Hillary, 2008). Accordingly, data from these areas
on the left and right hemispheres were collected for a total of four
time series of peak voxel activity (LACC, LPFC, RACC, RPFC) processed
by SPM5 as described above.

Individual analysis

The same program employed for the simulated data which used
LISREL's automatic search procedure (Appendix B) was then applied
to data obtained from an individual subject. Table 3 displays the chi-
square test of goodness-of-fit associatedwith each β parameter newly
freed in accordance with the Lagrange multiplier test. The path
representing LACC1 (left ACC at t+1) regressed on RPFC1 (right PFC
at t+1) became non-significant (t=-.05) once the autoregressive
influence for LACC (LACC at time) entered the model at the 14th
iteration. Trimming the model by constraining this parameter to zero
and refitting resulted in a final model with an excellent fit
(χ2=14.41, p=.16, Standardized RMR=.02, NNFI=.99, CFI=1.00;
Fig. 2). The autocorrelation function (ACF) for each region confirmed
the appropriateness of the model as they evidenced white noise
processes in the errors with no more significant lagged correlations
than would be expected by chance (Fig. 2).

Group analysis

For the group analysis, we pooled the individual covariance
matrices to arrive at a group covariance matrix representing average



Fig. 2. Unified SEM diagram and corresponding beta matrix for empirical individual example. Note: (a) Diagram of lag(1) relationships represented by dotted line and
contemporaneous relationships denoted by solid lines. All relationships are significant at the pb .05 level. ACC=anterior cingulated cortex and PFC=prefrontal cortex. The prefixes
of L=left and R=right. (b) Corresponding beta matrix obtained from LISREL. (c) Autocorrelation (ACF) plots for each region's residuals indicating white noise processes.
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relations among the ROIs with a lag of one. Again we applied the
program offered in Appendix B. Table 4 displays the chi-square test of
goodness-of-fit associated with each β parameter newly freed in
accordance with the Lagrange multiplier test. All estimated beta
coefficients remained significant in the final model acquired using the
automatic search procedure (Fig. 3) and themodel had an excellent fit
Table 4
Fits for models found using the automatic Lagrange multiplier tests using empirical
group example.

Model Newly estimated Beta χ2 Significance

1 None 1385.54 pb .001
2 RPFC1b -RPFC 1029.70 pb .001
3 LPFC1b -LPFC 737.36 pb .001
4 RACC1b -RACC 544.83 pb .001
5 LACC1b -RACC1 365.63 pb .001
6 RPFC1b -LPFC1 256.61 pb .001
7 LPFC1bLACC1 158.93 pb .001
8 LACC1b -LACC 100.11 pb .001
9 RACC1b -RPFC1 57.28 pb .001
10 RPFC1b -LACC 42.78 pb .001
11 LPFC1b -LACC 31.68 pb .001
12 LPFC1b -RACC 22.54 p=.020
13 RACC1b -RPFC 13.26 p=.21
14 RACC1b -LPFC1 9.14 p=.42

Note. ACC=anterior cingulated cortex and PFC=prefrontal cortex. The prefixes of
L=left and R=right. Abbreviations ending in “1” denote the time series at one scan in
the future.
(χ2=9.14, p=.42; Standardized RMR=.01, NNFI=1.00, CFI=1.00).
The autocorrelation function (ACF) for each region confirmed the
appropriateness of themodel as they evidenced white noise processes
(Fig. 3).

Discussion

Kim et al. (2007) present an approach, the unified SEM, for
assessing effective connectivity in ROIs that resolves concerns arising
from other procedures. First, the unified SEM allows for estimation of
contemporaneous relations controlling for sequential dependencies
which offers an improvement upon pathmodeling. Second, the unified
SEMobtains VAR estimates of lagged relationships after controlling for
contemporaneous effects, improving upon prior models of effective
connectivity. The unified SEM achieves these objectives by simulta-
neously estimating contemporaneous and lagged relationships.

A previously overlooked benefit of the unified SEM presents itself
when using LISREL software for estimation. Lagrange multiplier tests
conducted in an automatic procedure implemented in LISREL can be
used to select the most desirable directional paths. The program
iteratively selects in order paths that provide the greatest improve-
ment to the likelihood ratio tests. In this way, the automatic procedure
applied to the unified SEM is comparable to Granger causality in VAR
analysis. Because the procedure conducts forward-selection (i.e.,
selects the best path accounting for the influence of previously
selected paths), we suggest a posteriori trimming of non-significant
paths. The final model can then be re-estimated with the significant



Fig. 3. Unified SEM diagram and corresponding beta matrix for empirical group example. Note: (a) Diagram of lag(1) relationships represented by dotted line and contemporaneous
relationships denoted by solid lines. All relationships are significant at the pb .05 level. ACC=anterior cingulated cortex and PFC=prefrontal cortex. The prefixes of L=left and
R=right. (b) Corresponding beta matrix obtained from LISREL. (c) Autocorrelation (ACF) plots for each region's residuals indicating white noise processes.
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parameters estimated freely and all other paths constrained to zero. In
this manner, the program derives directional contemporaneous and
lagged paths that best match the data without necessitating prior
knowledge or theory of the relationships.

Finally, as another important addendum to the Kim et al. (2007)
article the present paper explicated the formal relationships among
SEM path modeling, VAR, and unified SEM.We used simulated data to
show how a fitted unified SEM can be transformed into an equivalent
VAR, and vice versa. In the process of demonstrating these relation-
ships, the biases which occur when estimating contemporaneous or
lagged relationships without simultaneously considering both sur-
faced. While a general form of the model was explicated here, the
model can be extended to include greater lags and more regions of
interest.

The ability to use a practical automatic search procedure for
unified SEM comes at an excellent time for researchers interested in
establishing connectivity maps of ROIs derived from fMRI data. The
state of fMRI research is quickly moving towards wanting to know not
just which ROIs become active during a task, but how the brain
orchestrates information processing among identified ROIs. The
ability for statistically drawn connectivity maps could greatly inform
burgeoning theories regarding effective connectivity.

Appendix A. Lagrange multiplier test

If data y generated by a joint density function f(y, θ0) under the
null hypothesis and by f(y, θ) with θ∈Rk under the alternative, the
Lagrange multiplier test maximizes the log-likelihood to the con-
straint θ=θ0. Letting H be the Lagrangian and defining L(θ, y) as the
log of f(y,θ):

H = L θ; yð Þ− λt θ − θ0
� �

with first order conditions ∂L/∂ θ = λ and B= θ 0. The score,
defined as:

s θ; yð Þ = AL θ; yð Þ= Aθ;

is set to zero under maximum likelihood estimation and is equal to λ.
The distribution of the score under the null will have a mean of

zero and variance Υ(θ0)T where T is the time or length of the series.
The statistic:

nLM = st θ; yð ÞtY−1 θ0
� �

s θ; yð Þ= T;

will have a χ2 distribution with k degrees of freedom. If ξLM is
high, the constraint that the model with the extra parameter
estimated equals the null (or less parameterized model) may be
rejected (Engle, 1984). It follows from Eq. (8) in Sörbom (1989) that
the current version of LISREL's modification index is equivalent to the
Lagrange multiplier test based on ξLM.
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Appendix B

Sample LISREL program for conducting unified SEM using the automatic Lagrange multiplier test search procedure.
Acknowledgment

This work was supported by a National Science Foundation grant
(0852147).

References

Ashburner, J., Neelin, P., Collins, D.L., Evans, A., Friston, K., 1997. Incorporating prior
knowledge into image registration. NeuroImage 6 (4), 344–352.

Brett, M., Anton, J.L., Valabregue, R., Poline, J.B., 2002, Junee. Region of interest analysis
using an SPM toolbox [abstract]. Presented at the 8th International Conference on
Functional Mapping of the Human Brain. Sendai, Japan.

Chou, C-P., Bentler, P.M., 1990. Model modification in covariance structure modeling: a
comparison among Likelihood Ratio, Lagrange Multiplier, and Wald tests.
Multivariate Behav. Res. 25, 115–136.

D'Esposito, M., Aguirre, G.K., Zarahn, E., Ballard, D., Shin, R.K., Lease, J., 1998. Functional
MRI studies of spatial and nonspatial working memory. Cogn. Brain Res. 7 (1), 1–13.

Engle, R.F., 1984. Wald, likelihood ratio, and Lagrange multiplier tests in Econometrics.
In: Griliches, Z., Intriligator, M.D. (Eds.), Handbook of Econometrics, II. Amsterdam,
North Holland, pp. 775–826.

Friston, K.J., 2007. Dynamic causal modeling. In: Friston, K.J., Ashburner, J.T., Kiebel, S.J.,
Nichols, T.E., Penny, W.D. (Eds.), Statistical Parametric Mapping: The Analysis of
Functional Brain Images. Academic Press, Amsterdam, pp. 541–560.

Friston, K.J., Holmes, A.P., Poline, J.B., Grasby, P.J., Williams, S.C., Frackowiak, R.S., Turner,
R., 1995. Analysis of fMRI time-series revisited. NeuroImage 2, 45–53.

Friston, K.J., Stephan, K., 2007. Modeling brain responses. In: Friston, K.J., Ashburner, J.T.,
Kiebel, S.J., Nichols, T.E., Penny, W.D. (Eds.), Statistical Parametric Mapping: The
Analysis of Functional Brain Images. Academic Press, Amsterdam, pp. 32–45.

Goebel, R., Roebroeck, A., Kim, D.S., Formisano, E., 2003. Investigating directed cortical
interactions in time-resolved fMRI data using vector autoregressive modeling and
Granger causality mapping. Magn. Reson. Imaging 21, 1251–1261.

Goncalves, M.S., Hall, D., 2003. Connectivity analysis with SEM: an example of the
effects of voxel selection. NeuroImage 20, 1455–1467.

Harrison, L., Stephen, K., Friston, K., 2007. Effective connectivity. In: Friston, K.J.,
Ashburner, J.T., Kiebel, S.J., Nichols, T.E., Penny, W.D. (Eds.), Statistical Parametric
Mapping: The Analysis of Functional Brain Images. Academic Press, Amsterdam,
pp. 508–521.

Hillary, F.G., 2008. Neuroimaging of working memory dysfunction and the dilemma
with brain reorganization hypotheses. J. Int. Neuropsychol. Soc. 14 (4), 526–534.

Hillary, F.G., Genova, H.M., Chiaravalloti, N.D., Rypma, B., DeLuca, J., 2006. Prefrontal
modulation of working memory performance in brain injury and disease. Hum.
Brain Mapp. 27, 837–847.

James, G.A., Kelley, M.E., Craddock, R.C., Hotzheimer, P.E., Dunlop, B.W., Nemeroff, C.B.,
Mayberg,H.S.,Hu,X.P., 2009. Exploratory structural equationmodelingof resting-state
fMRI: applicability of group models to individual subjects. NeuroImage 45, 778–787.

Jöreskog, K.G., 1997. LISREL 8: User's Reference Guide. Chicago: Scientific Software
International, Inc.

Jöreskog, K.G., Sörbom, D., 1992. LISREL. Scientific Software International, Inc.
Kim, J., Zhu, W., Chang, L., Bentler, P.M., Ernst, T., 2007. Unified structural equation

modeling approach for the analysis of multisubject, multivariate functional MRI
data. Hum. Brain Mapp. 28, 85–93.

McIntosh, A.R., Gonzalez-Lima, F., 1994. Structural equationmodeling and its application
to network analysis in functional brain imaging. Hum. Brain Mapp. 2, 2–22.

Penny,W.,Harrison, L., 2007.Multivariate autoregressivemodels. In:Friston,K.J., Ashburner,
J.T., Kiebel, S.J., Nichols, T.E., Penny, W.D. (Eds.), Statistical Parametric Mapping: The
Analysis of Functional Brain Images. Academic Press, Amsterdam, pp. 534–540.

Roebroeck, A., Formisano, E., Goebel, R., 2005. Mapping directed influence over the
brain using Granger causality and fMRI. NeuroImage 25, 230–242.

Sarty, G.E., 2007. Computational Brain Activity Maps from fMRI Time-Series Images.
Cambridge University Press, New York.

Shumway, R.H., Stoffer, D.S., 2006. Time Series Analysis and Its Applications with R
Examples. Springer, New York.

Smith, E.E., Jonides, J., 1999. Storage and executive processes in the frontal lobes.
Science 283 (5408), 1657–1661.

Sörbom, D., 1989. Model modification. Psychometrika 54, 371–384.
Wagner, A.D., Maril, A., Bjork, R.A., Schacter, D.L., 2001. Prefrontal contributions to

executive control: fMRI evidence for functional distinctions within lateral
prefrontal cortex. NeuroImage 14 (6), 1337–1347.

Zhuang, J., LaConte, S., Peltier, S., Zhang, K., Hu, X., 2005. Connectivity exploration with
structural equation modeling: an fMRI study of bimanual motor coordination.
NeuroImage 25, 462–470.


	Automatic search for fMRI connectivity mapping: An alternative to Granger causality testing usi.....
	Introduction
	Methods
	Unified SEM
	Automatic optimal model search
	Formal specification of SEM path models
	Formal specification of vector autoregression (VAR) models
	Formal specification of unified SEM
	Unified SEM using automatic Lagrange multiplier testing
	Formal relationships among path modeling, VAR, and unified SEM

	Results: Simulated data
	Unified SEM with automatic search applied to simulated data
	Equivalences among contemporaneous path model, VAR, and �unified SEM

	Methods and materials: Empirical data
	Results: Empirical data
	Individual analysis
	Group analysis

	Discussion
	Lagrange multiplier test
	Appendix B
	section20
	References




