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There has been increasing emphasis in fMRI research on the examination of how regions covary in a
distributed neural network. Event-related data designs present a unique challenge to modeling how
couplings among regions change in the presence of experimental manipulations. The present paper presents
the extended unified SEM (euSEM), a novel approach for acquiring effective connectivity maps with event-
related data. The euSEM adds to the unified SEM, which models both lagged and contemporaneous effects,
by estimating the direct effects that experimental manipulations have on blood-oxygen-level dependent
activity as well as the modulating effects the manipulations have on couplings among regions. Monte Carlos
simulations included in this paper offer support for the model's ability to recover covariance patterns used to
estimate data. Next, we apply the model to empirical data to demonstrate feasibility. Finally, the results of
the empirical data are compared to those found using dynamic causal modeling. The euSEM provides a
flexible approach for modeling event-related data as it may be employed in an exploratory, partially

exploratory, or entirely confirmatory manner.

© 2010 Elsevier Inc. All rights reserved.

The introduction of functional MRI (fMRI) nearly two decades ago
propagated a wealth of research examining the response to
experimental stimulation in predefined brain regions of interest
(ROIs). Having amassed knowledge on which distinct ROIs corre-
spond to specific manipulations, there has been increasing emphasis
in fMRI research to examine not only what regions are active, but how
ROIs covary in a distributed neural network. This more recent
emphasis in neural connectivity aims to discover how spatially
disparate regions temporally relate in response to task demands. The
driving principle supposes that brain functioning can best be
understood as an integrated process involving spatially distributed
regions across time (Tononi et al., 1998; Sporns et al., 2004) rather
than as a response localized in only one or two highly specialized
areas. Such approaches fall under the broad domain of “connectivity
mapping”, a set of modeling techniques that estimate the extent to
which activity among previously specified ROIs' relate (Friston and
Stephan, 2007). These relationships between ROIs in connectivity
maps are often referred to as, “couplings” (e.g., Friston, 2007). The
most prominent techniques for modeling spatial integration identify
couplings among ROIs at baseline (or resting state) separately from
couplings occurring when an experimental manipulation is presented.
This approach works well for block designs but is difficult to
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implement with event-related designs. At present there remains a
dearth of techniques appropriate for identifying changes in spatial
integration occurring in the presence of event-related manipulations.

The present paper first offers a brief overview of relevant methods
for examining “effective connectivity” networks, defined as maps
which identify directional couplings among predefined ROIs (Friston
and Stephan, 2007). Importantly, the present paper outlines how the
majority of approaches, such as traditional structural equation models
(SEM),vector autoregression (VAR) and unified SEM (uSEM), neglect
to directly estimate the influence that event-related experimental
manipulations has on connections, which is precisely the information
of interest to researchers. We then discuss the dynamic causal model
(DCM) which to date is the sole approach for including event-related
manipulations and their influence on couplings among ROIs. These
approaches to modeling effective connectivity (e.g., SEM, VAR, uSEM,
and DCM) have advanced our understanding of distributed neural
networks in the functional imaging literature. Still, there remain
challenges with each of the modeling techniques to date. We offer a
novel approach, the extended unified SEM (euSEM) which advances
current techniques from within a general linear model framework.
Specifically, the euSEM (1) models the effects on ROI activity of
stimuli used in event-related experimental designs, (2) simulta-
neously estimates directed contemporaneous and lagged coupling
parameters among ROIs, (3) estimates the modulating effect that the
experimental manipulation has on couplings among ROIs, (4) may be
identified using confirmatory, partially exploratory, or entirely
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exploratory approaches based on the Lagrange multiplier test, and (5)
can be applied to both group and individual data.

Current approaches for effective connectivity mapping

Effective connectivity maps, as currently employed, estimate
directed couplings among ROIs that have been defined by the
researcher either anatomically or by using tests of statistical
significance to extract information from voxels which contain the
greatest change in BOLD response. In either case, the ideal ROIs are
hypothesis-driven and informed by previous experimental manipula-
tion. Thus researchers can expect a degree of relatedness among ROIs
since the selection process supposes that the chosen ROIs will increase
in level in the presence of the experimental manipulation. However, it
is critical to keep in mind that the general linear model employed to
determine which areas are active looks for mean differences in the
BOLD signal between experimental conditions. In contrast, connec-
tivity maps are primarily concerned with the covariance in the signal
between ROIs. A bulk of emerging research on resting state or default
mode networks demonstrate that coordinated variations exist in the
absence of experimental manipulations (Raichle and Snyder, 2007).
As such, shared contemporaneous and lagged variation among ROIs
may occur at times when the experimental manipulation is not
presented. Along a similar rationale, shared variation in BOLD signals
could occur between ROIs only in the presence of an experimental
manipulation but not when the manipulation is absent, in which case
the experimental manipulation is said to modulate the relationship
among the ROIs. Finally, shared variation among ROIs could be similar
in the presence and absence of the experimental manipulation.
Connectivity maps attempting to explain relations among ROIs
usually neglect to explicate in what context the couplings exist.

Structural equation modeling (SEM) is the most popular method
for researchers aiming to model effective connectivity (McIntosh and
Gonzalez-Lima, 1994). Allowing for directed paths, SEM simulta-
neously models relationships among ROIs. Two major shortcomings
with this approach are that SEM assumes linearity in the relationships
between ROIs and considers experimental manipulation (i.e., task
related change and external input) as stochastic or undetermined
rather than included as a predictor variable in the model (Friston,
2007). SEM thus works best on data where one can assume similar
relations among ROIs across a block of time but becomes ill-suited for
event-related designs which may provoke couplings immediately
following a stimulus that differ from those existing in the absence of
the stimuli (de Marco et al., 2009). Yet another limitation comes from
the tradition in fMRI research of using SEM largely for confirmatory
analysis. At this early phase of research designed to understand
effective connectivity, exploratory approaches may complement
confirmatory approaches by offering the opportunity to acquire
atheoretical models of how structures within a network relate. One
final limitation of the traditional SEM approach concerns the reliable
finding that BOLD time series data contain serial dependencies, or
“lagged effects”, meaning that previous input to a voxel or region
influences later signal in that voxel or region (Harrison et al., 2007).
Similarly, activity occurring at a remote location at a previous time
point may also influence current levels of activity at a second region.
Traditional SEM employed in fMRI research does not consider these
lagged effects. By neglecting the influence of lagged relations, biased
estimates occur and temporal precedence (which is just one criteria
necessary to establish causality) is unknown.

Approaches such as vector autoregression (VAR) and Granger
causality testing address one of SEM's shortcomings by modeling
lagged relationships among regions (Goebel et al., 2003). However,
these approaches obtain biased estimates by not considering
contemporaneous relations (Gates et al., 2010). The unified SEM
(uSEM; Kim et al., 2007) has recently been presented as a remedy for
this issue. The uSEM estimates contemporaneous relationships much

like traditional SEM but improves upon the model by simultaneously
considering lagged effects by means of VAR, thus making this
approach dynamic (Kim et al., 2007). An automatic search procedure
allows for the uSEM to be entirely data-driven, offering a substantial
degree of flexibility when compared to alternative approaches (Gates
et al., 2010). However, even with these improvements upon the
traditional SEM, the model assumes that relations among ROIs are
linear and continues to be inappropriate for event-related designs.

One critical remaining challenge for the SEM,VAR, and uSEM
approaches is that none include an estimate of the effects of
experimental manipulations on ROI activity. Experimental manipula-
tion, such as the presentation of stimuli, carries the possibility of
directly affecting ROI activity or affecting the couplings among ROIs.
For instance, some ROIs may have a resting state relationship with
another ROI and become deactivated with the presence of external
stimuli. Conversely, couplings among ROIs identified during a task
involving stimuli in a block design may be detecting covariance
primarily attributable to resting state brain functioning and have little
to do with the task. Friston et al. (1997) offered a preliminary solution
within the general linear model framework which modeled the
contemporaneous interactions between BOLD activity and experi-
mental manipulations. However, as the errors associated with
predicted ROI activity were assumed to be independently distributed,
this model does not account for lagged couplings among ROIs or the
lagged influence of the experimental manipulation on BOLD activity.
Thus, there is a clear need for connectivity modeling that allows for
different path coefficients representing the potentially distinct roles
ROIs may have at the time of task stimulation.

Dynamic causal modeling (DCM) addresses the need to model
event-related experimental manipulations while considering the
changes in BOLD activity. Providing perhaps the most statistically
sophisticated approach to date, DCM incorporates the neuronal-
hemodynamic relationship into a dynamic model of BOLD activities
using Bayesian estimation (Friston, 2007; Sarty, 2007). DCM estimates
the modulating effects of external input on the paths between ROIs to
arrive at a bilinear state-space approximation, making it unlike
previously described models which assume linearity in the relations
between ROIs. As DCM constitutes a system in continuous time the
direct and bilinear (or modulating) effects of input establish themselves
after an infinitesimal amount of time. Two characteristics of the DCM
provide reason for developing alternative or complementary methods
for bilinear estimation. First, DCM represents the dynamics of BOLD
activities as being deterministic with the only stochastic influence being
the additive measurement error. In the absence of external input, the
DCM will likely estimate ROI activity to be constant. Prior research on
resting state or default mode models indicate that BOLD activity
fluctuates even in the absence of experimental manipulation (Raichle
and Snyder, 2007). Second, the DCM is confirmatory, necessitating a
priori specification of directed couplings between ROIs as well as all
modulating effects. At this early state in connectivity research, this
model could be supplemented by one which allows for error and
exploratory analysis. A successful approach would offer the opportunity
to model between-task couplings as well as on-task couplings among
ROIs while attending to the biases introduced when not considering
sequential dependencies among the BOLD data.

Extended unified SEM

The present paper presents a practical approach, the extended
unified SEM (euSEM) for estimating direct and modulating external
experimental influences on BOLD activity without a priori specifica-
tion. Following a description of the model, we demonstrate the
ability of the euSEM to recover parameters used to create simulated
data in two Monte Carlos studies. We next apply the euSEM to
empirical data taken from a study which utilized an event-related
design. The resulting model is fit to a DCM for comparison.
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The euSEM proposed here builds upon the uSEM by accounting for
the temporal effects of experimental manipulations on ROl activity. Thus
the uSEM works best for block designs and the euSEM excels at
modeling effective connectivity mapping for event-related designs. For
this reason, the hemodynamic response function (HRF) can be
incorporated with the euSEM by convolving the vector of onsets of
the input with a response function which matches the temporal reaction
seen in ROIs (see Friston and Stephan, 2007; Sarty, 2007). This is not
possible with the uSEM, which is optimal for block designs. Fig. 1 depicts
a decision tree that for modeling effective connectivity models within
the general linear model framework which highlights the advances the
euSEM makes upon previous models. Furthermore, the euSEM
estimates bilinear (or modulating) effects, representing the influence
that experimental manipulations has on couplings among ROIs, much
like the DCM (see Table 1 for a comparison of the euSEM and DCM).
After considering all modeling techniques to date, the euSEM emerges
as the only approach that directly estimates the effect of stimuli on brain
activity while accounting for both lagged and contemporaneous
coupling effects among ROIs.

Estimating modulating influences that experimental manipulations
have on couplings attends to a core question in fMRI research: how does
brain functioning change when presented with specific stimuli? With
bilinear approaches researchers may identify how couplings between
ROIs change during stimulation. As mentioned above, a final euSEM
model may be derived in an entirely data-driven manner. The euSEM
can also be conducted as a confirmatory model if theoretical directions
exist. Indeed, the euSEM as implemented in LISREL allows the
researcher to constrain some couplings to zero, or require that some
couplings be estimated, while exploring additional couplings in a data-
driven manner. A final added benefit of the euSEM is that lagged
relationships among ROIs and external input are taken into account in a
stochastic model.

Formal specification of the euSEM

The following discrete-time bilinear linear system was adapted
from Fnaiech and Ljung (1987) and Mathews and Sicuranza (2000).
For continuity, the notation used by Kim et al. (2007) was retained for
the present model:
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Fig. 1. Decision tree for effective connectivity analysis.
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Table 1
Comparison of dynamic causal modeling (DCM) and extended unified structural
equation modeling (euSEM).

DCM euSEM

Stochastic

Exploratory or confirmatory

Maximum likelihood estimation

Models contemporaneous and lagged effects
(discrete)

Models external input effects and bilinear
effects of input and ROI activity

Currently deterministic

Confirmatory

Bayesian estimation

Models instantaneous change
(continuous)

Models external input effects and
bilinear effects of input and ROI
activity

where 7) indicates the ROI time series, u a one-vector input series
(which may be expanded to include more inputs) convolved with a
hemodynamic response function (see Sarty, 2007 ), A the contempo-
raneous relations among ROIs, & the lagged associations, 7y input
effects, T the bilinear associations, and ¢ error assumed to be a white
noise process. For practical purposes, the equation can be truncated
for a lag of one with one input in the following manner:

M= AN + dMe—q + Yol + ViU + Ty Meql—r + &

~— ——
Cont. Lagged Input

Modulating

Diagnostics in the form of residual analysis may be used to identify
if more lags should be considered. Residuals should demonstrate a
white noise process when looking at autocorrelations (Liitkepohl,
2005). If a white noise process is not evident, the residuals may be
treated to further analysis to identify which variables should have lags
of greater order.

Model estimation begins by creating a block Toeplitz matrix of the
relations among ROIs, input, and the multiplication of ROI and input
activity at time minus one and at time. This approach enables
estimates of AR processes that asymptotically approach true maxi-
mum likelihood estimates (Hamaker, Dolan, & Molenaar, 2002) and
thus may be considered quasi-likelihood (Heyde, 1997). We then
select those variables of interest to predict the ROI series at time: ROIs
at time minus one (1), — 1), ROIs at time (1)), input at time minus one
(uy 1) and time (u), and the dot product of ROI activity and input at
time minus one (1) _ 1 #,_1). The beta matrix to be estimated follows
the pattern in Table 2. Only parameters that predict ROI activity at
time may be freed (either using the automatic search or a priori
theory) and all others remain fixed. The relations not considered by
the beta matrix are modeled as correlations in the psi matrix. By
capitalizing on the analytic equivalence between SEM and the state-
space framework (Chow, Ho, Hamaker, & Dolan, 2010), the euSEM
may be fit within a familiar regression framework.

The euSEM may be estimated by using an automatic search
procedure to help identify the optimal model or by selecting the
parameters of theoretical interest to apply a confirmatory test. For the
automatic search procedure, LISREL first estimates an empty model
and utilizes Lagrange multiplier tests (LMTs) to search for the
parameter that, if estimated, would best improve overall model fit
(for details, see Gates et al., 2010). Only parameters relating to the A,
v, &, and T matrices are considered in the search procedure for euSEM.
In the next iteration, the program frees this parameter and re-
estimates the model. The procedure continues until no one parameter
would improve the overall fit by the significance level set by the
researcher.

Structural identifiability, which is necessary to obtain unique
parameter estimates, can be established in the automatic search
described above in the following practical way. If a convergent
solution is obtained in the automatic search based on the quasi-
likelihood method then structural identifiability is almost always
guaranteed. In the absence of structural identifiability, the LMT, which
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Table 2

Schemata of the beta matrix for four regions and one input estimated using quasi-maximum likelihood implemented in LISREL. “1”s denote parameters that may be set free in

accordance to euSEM specifications.

ROI'1 ROI 2 ROI 3 ROI4  ROIT(t) ROI2(t) ROI3(t) ROI4(t) INPUT INPUT ROIT* ROI2* ROI3* ROI 4 *

(t-1) (t-1) (t-1) (t-1) (t-1) (t) INPUT  INPUT INPUT

(t-1) (t-1) (t-1) (t-1)
ROIT (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROI 2 (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROI 3 (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROI 4 (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROI'1 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ROI 2 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ROI3 (1) 1 1 m 1 1 1 1 A 1 1 1 v 1 1 1 T 1 1
ROI 4 (t) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
INPUT (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INPUT (t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROI'1* INPUT (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROI 2 " INPUT (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROI 3 " INPUT (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROI 4 * INPUT (t-1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

depends upon the Hessian of the likelihood function, would not exist.
Because in the quasi-likelihood approach the euSEM is fit to the
covariance matrix at a finite number of lags, standard identifiability
theory for SEMs can be applied at a more theoretical level. This
amounts to determining alpha-numerically the dimension of the null
space of the Jacobian of the log-likelihood function with respect to the
parameters (Bekker et al., 1994). The euSEM constitutes a subset of a
class of recursive polynomial systems (Mathews and Sicuranza,
2000). The stability of the standard model for bounded input u(t)
depends on the absolute values of the roots of (I, — (I,—A)"®;)
being smaller than 1, where I, is the (p,p)-dimensional identity
matrix. (for the case of arbitrary orders q, k, s, and r, see Mathews and
Sicuranza, 2000, pp. 310-312, ).

Application
Monte Carlo simulations

Two sets of simulated data, one with 200 time points and the
second with 1,000 time points, were created using the parameters in
Table 3. For both sets model errors were generated to be white noise N
(0,1) and the input series were generated such that at each time, there
was a .3 probability of the event occurring independent of other
events. The input series were then convolved with a gamma function
to model the hemodynamic response (Sarty, 2007). Table 3 displays
the average parameter estimates, standard errors (both analytical
averages and empirical estimates), and fit statistics after 100
replications for each length of time series. The procedure successfully
identified the correct models as the estimated parameters did not
differ significantly from the original parameters used to create the
data.

Further support for the appropriateness of the extended unified
SEM comes from the excellent model fits obtained in the majority of
the replications. With 35 degrees of freedom, chi-square values of less
than or equal to 49.8 and 57.3 at a significance levels of p=.05 and
p=.01, respectively, suggest an acceptable model fit. Eighty-five
percent of the models estimate for both the NT=200 and NT = 1000
series were appropriate model fits according to the .05 level criteria,
and 96% of the models were appropriate at the .01 level. The chi-
square test thus seems too conservative as more models were found
to be poor fits than expected by chance. Therefore, four commonly
used alternative fit indices were examined. First, the Standardized
RMR assesses goodness-of-fit via the mean standardized residuals.
The second, root mean square error of approximation (RMSEA), is an
absolute measure of fit that estimates the error of approximation per

degree of freedom. For these first two indices values under .05
suggests an excellent fit. Working under the assumption that the fit
function of the estimated model is chi-square distributed, the Non-
Normed Fit Index (NNFI) penalizes the model for each parameter
added. Finally, the comparative fit index assumes a noncentral chi-
square distribution (Hu & Bentler, 1998). The latter two indices
penalize the models for each parameter added and values of .95 and
above indicate an excelled model fit (Kenny and McCoach, 2003;
Schermelleh-Engel et al., 2003). According to these four indices all of
the estimated models demonstrated excellent fits.

Empirical data example: rapid processing task

Procedure

Data were acquired as part of a larger study examining deficits in
processing speed for individuals with multiple sclerosis. The present
data were extracted from one healthy female participant aged
49 years and Caucasian. Details of the study have been published
elsewhere (Genova et al., 2009; Hillary, et al., 2010). Briefly, the study
used the modified Digit Symbol Substitution Task (Rypma et al., 2006;
Smith, 1982) to assess processing speed. The subjects were presented
with two boxes: one reference box containing paired numbers and
symbols and one probe box containing only one pair of a number and
symbol. Respondents were given up to 6 seconds to indicate whether
the probe appeared in the reference box. There were three trials each
lasting 7 minutes and 48 seconds and containing 225 TRs. Following a
practice period, 153 events were presented to the subject during MRI
acquisition.

MRI data processing

Neuroimaging was performed at the University of Medicine and
Dentistry of New Jersey on a Siemens Allegra 3 T MRI Sagittal T1-
weighted scout images were obtained for localization. Whole brain
axial T1-weighted conventional spin-echo images (in-plane resolu-
tion=0.859 mm2) for anatomic underlays (TR/TE=450/14 ms,
contiguous 5 mm, 256x256 matrix, FOV=24 cm, NEX=1) were
then obtained. Functional imaging consisted of multislice gradient
echo, T2*-weighted images acquired with echoplanar imaging (EPI)
methods (TE=60 ms; TR=2000 ms; FOV =24 cm; flip angle=90°;
slice thickness =5 mm contiguous), yielding a 64 x 64 matrix with an
in-plane resolution of 3.75 mm2.

Analysis of MRI data
Image processing and initial statistical analysis were conducted
with Statistical Parameter Mapping (Friston, et al., 1995) version 5
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Results from two Monte Carlos simulation studies with number of time points (NT) equal to 200 and 1000. Numbers in parentheses below the average parameter estimates are the average
standard error on the left of the dash and the empirical standard error on the right. “~” denotes that the parameter was not estimated. NT=number of time points in simulation.

Parameters for Simulation Estimated Parameters (NT=200) Estimated Parameters (NT=1000)
0.40 0 0 0 .39 -- - -- 0.40 - - -
(.06/.06) (.03/.03)
0 0.40 0 0 - 39 - -- - 0.40 - -
q) (.06/.05) (.03/.02)
0 0 0.40 0 - -- 39 -- - - 0.40 -
(.06/.06) (.03/.03)
0 0 0.30 0.40 - -- .30 39 - - 0.30 0.40
(.06/.06) (.05/.05) (.03/.03) (.03/.03)
0 0 - -- - -- - - - -
0 0.40 - - 41 - - - 40 -
A (.06/.06) (.03/.03)
0.40 0 0 0 0.38 -- - -- .38 - - -
(.06/.08) (.03/.03)
0 0 0 0 - -- - -- - - - -
fY 0.20 0 0 0 .20 - - - 21 - - -
0 (.07/.07) (.03/.03)
’Y 0 0.30 0 -0.30 - 82 - -31 - .30 - -30
1 (.07/.08) (.08/.08) (.03/.04) (.03/.03)
0 0 0 0 - -- - -- - - - -
0 0 0 0 - -- - -- - - - -
T
0 0 0 0 - -- - -- - - - -
0 0 0.50 0 - -- 49 -- - - .50 -
(.06/.06) (.03/.02)

(http://www.fil.ion.ucl.ac.uk/spm5). To control for initial signal
instability, the first nine volumes were removed from analyses.
Preprocessing steps included realignment of functional data to the
first functional image using affine transformation (Ashburner et al.,
1997; Friston et al,, 1995). Images were coregistered to the TI MPRAGE
and all data were normalized using a standardized T1 template from
the Montreal Neurological Institute, using a 12-parameter affine
approach and bilinear interpolation. Then, normalized time series
data were smoothed with a Gaussian kernel of 8 x8x 10mm?>. Time
series for the right and left prefrontal cortex (RPFC and LPFC) and the
right and left cerebellum (RCB and LCB) were selected by obtaining
the first principal component scores in these regions. The first and last
data points of the time series were shed due to extremely large values.

standardized RMR=.033, NNFI=.93, and CFI=.97. A modulating
effect surfaced five iterations later which was significant. When this
effect was added to the model with coupling parameters, the final
model again had an excellent fit: 112.05 (df=37), RMSEA =.056,
standardized RMR =.029, NNFI=.94, and CFI=.97 (see Fig. 2). The
residual process was investigated by estimating the autocorrelation
function (ACF) for the prediction of ROI activity (see Fig. 2). The
residuals demonstrate a white noise process, suggesting that a lag of
one is sufficient to predict ROI activity in these data.

The influence of the stimuli on ROI activity appears to be
predominantly direct for this individual (see Fig. 3). For instance,
direct effects for the stimuli on the RPFC and LCB exist. The only
modulating effect was seen for RPFC: in the presence of the stimuli,
the autoregressive effect for this ROI becomes negative. This suggests

Results
The model of couplings among ROIs was selected by employing the 12 T T T T T T T T J
automatic search procedure. An alternative and feasible approach 3 ® LCB
would be to identify couplings among ROIs and the experimental ¥ vl (N
manipulation a priori and use the automatic search procedure to 08l ®_RPFC| |
investigate other paths which may improve the model. For the
present purposes, a model was selected based predominantly on the W 061 -
alternative indices previously discussed which have demonstrated g
reliability in simulation studies (Brown, 2006): RMSEA, Standardized 04f T
RMR, NNFI, and CFIL. Then, we looked at later iterations to identify
. . . 02} i
modulating terms to add to this underlying structural model. The . v . -
rationale. for this approach comes _from the insight that it takes 0 . * y 4 é g2 ! ¢ E sy d ' |
substantial power to detect multiplicative terms (Cronbach, 1987). ¥,ow e + '
Thus, modulating effects, which are what researchers are interested in 022 L . L L L L L L
. . . . . 0 2 4 B 8 10 12 14 16 18 20
exploring, may not surface as early in the iterative procedure as main Lag

effects. The selected model containing the underlying coupling
parameters had a chi-square of 118.46 (df =38) but demonstrated a
good fit by indices not as sensitive to sample size: RMSEA =.056,

Fig. 2. Autocorrelation function (ACF) of residuals obtained from final model. Dotted
sea green lines indicate confidence intervals at the Bonferroni-corrected level.
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Contemporancous Effects
A Y
LCB(1) LPFC(t) RCB(1) RPFC(1) Task(t)
LCB(t) - - .42(.03) - -
LPFC(1) -.15(.03) - - .65(.03) -
RCB(1) - - - 27(.04) -
RPFC(t) - - - - .29(.04)
Lagged Bilinear Effects
T

LCB*Task(t-1) LPFC*Task(t-1)

RCB*Task(t-1)

RPFC*Task(t-1)
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RCB(t) = =
RPFC(t) = =

& -09(03)

Fig. 3. Extended unified SEM results for empirical data. Contemp. = Contemporaneous. Numbers in parentheses are standard errors of the parameter estimates. “~" denotes that the
parameter was not estimated. Thickness of lines corresponds with magnitude of relationship.

that a system occurs by which BOLD activity increases when the
previous scan's activity was low, and decreases when it was
previously high. Thus, one might interpret this as the ROl modulating
itself or damping activity in the presence of excitatory influence. The
direct contemporaneous relation between the stimuli and RPFC is
positive, suggesting that when a stimulus is shown the RPFC has
increased activity. These relationships among the stimuli and RPFC
appear to be particularly important since the RPFC exerts influence on
RCB and LPFC directly and the LCB indirectly via the RCB. Furthermore,
although the LPFC and RCB demonstrated significant BOLD signal
changes in the presence of the experiment manipulation when tested
using the general linear model, the connectivity map evidenced no
direct influences of the stimuli on activation. The rises in activity
associated with the stimuli are best explained by its relationship with
the other ROIs. The stimuli indirectly influence variation in the LPFC via
the lagged and contemporaneous relationship they have with the RPFC
and LCB, and similarly influenced RCB via its relationship with RPFC.

Comparing extended unified SEMs with dynamic causal models

The data-driven euSEM obtained via the automatic search
procedure was then subjected to confirmatory dynamic causal
modeling. This exercise demonstrates the utility of using the
automatic search procedure to first identify a plausible model and

subsequently test the model using the DCM for researchers wishing to
use the DCM approach. As a reminder, a major substantive difference
between the extended unified SEM and the DCM is that the DCM
incorporates a neural-hemodynamic model whereas the extended

Bayesian Model Selection
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Fig. 4. DCM model selection figures. The models with higher posterior probabilities are

better fitting. Full model descriptions may be found in the text.
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Fig. 5. Estimates from dynamic causal model. Contemp. = Contemporaneous. “~” indicates no parameter was estimated. For ease in comparison with the euSEM, only parameter

estimates with posterior probabilities greater than .90 were retained in the figure.

unified SEM models the BOLD response without making assumptions
regarding the neural-hemodynamic process. However, the euSEM can
be used for confirmatory models for researchers wishing to remain
agnostic about the neural-hemodynamic relationship.

By modeling change occurring at an infinitesimal time, the DCM
model most comparable to the euSEM would presumably be one that
considers only contemporaneous effects and not the lagged effects,
which occur at the time span of the scans. Still, we wanted to test
whether the best DCM model obtained was in fact the one which
modeled the contemporaneous couplings among ROIs. Thus, we
specified four DCM models to test. The first contained only the
contemporaneous relations found in the euSEM (allowing for the
lagged modulating term), the second contained the contemporaneous
plus lagged effects and all inputs, the third the lagged relations, and the
fourth lagged and contemporaneous. The model containing only the
contemporaneous couplings and inputs plus the modulated lagged
effect from the euSEM was the best model fit. To ensure that this model
was not considered the best solely as a function of the number of
parameters included, we also reversed the contemporaneous model so
that the directed arrows went the opposite direction. Still, the model
with only the contemporaneous and modulating relations found in the
euSEM was best (see Fig. 4). Fig. 5 displays the diagram and parameter
estimations for the selected DCM. Comparing the contemporaneous
and modulating effects found in the euSEM with those found in the
DCM reveals a few differences. For one, the contemporaneous effect for
LCB regressed on LPFC, while significant in the euSEM, was found to be
below the suggested criteria of 90% posterior probability for retention
in the DCM (Stephan et al, 2010). The modulating effect for the
autoregression of RPFC was similarly negligible in the DCM despite
being significant in the extended unified SEM.

Discussion

Functional MRI data have the potential to offer rich insight into the
orchestration of brain activity. Much of the work to date has focused
on identifying which areas of the brain become active when presented
with specific stimuli or task demands. Having identified ROIs
associated with specific mental processes, researchers now wish to

answer more complicated questions that take into account the
temporal ordering of activity. Connectivity modeling offers critical
additional information about neural systems for researchers in a
broad range of substantive backgrounds who seek to understand the
mechanisms by which normal and atypical functioning occur. The
euSEM presented in this paper offers a practical and complete method
for examining relations among ROIs while including information
about experimental manipulations, thus offering several important
advantages for connectivity modeling in fMRI time series data.

The greatest advancement that the euSEM offers over current
connectivity models is the inclusion of direct and modulating effects of
external input on ROI activity. Indeed, although most research
examining brain function includes external input, there remain
important limitations with respect to how inputs can be modeled. To
date, documenting the influence of external input on covariance
between ROIs requires separate connectivity maps for each “on-task”
epoch. This necessitates the use of block designs not out of a substantive
interest or theoretical view that the brain functions in discrete states but
due to methodological limitations. The euSEM provides an integrated
framework for examining ROI behavior within distributed neural
networks and, importantly, permits inferences regarding how stimuli
affect ROI covariance at the level of individual events.

Given that neural connectivity modeling in systems neuroscience
remains in its infancy data-driven, exploratory approaches to examine
covariance in ROIs may be particularly advantageous. In this way, the
euSEM again offers a clear advantage over other approaches.
Following from the method outlined in Gates et al. (2010) we present
here confirmatory models acquired from an entirely data-driven
procedure on previously specified ROIs. The exploratory method
considers all possible relations among ROIs (including lagged effects)
as well as the lagged modulating effect that external input may have
on the connection before selecting the next parameter to free for
estimation. Such an approach is ideal for theory development. A
second way in which researchers may use the exploratory procedure
would be to directly compare the best model derived via a data-driven
approach with a hypothesized connectivity map. Confirmation that a
proposed model does not significantly differ from an entirely data-
driven model would strongly bolster the findings. Finally, the data-
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driven model may help research that has support for hypothetical
connections identify additional couplings among ROIs that, while not
included in their theory, improves the overall model fit and insight
into brain processes.

The sole alternate bilinear method for modeling event-related
designs is the DCM. As demonstrated here, the euSEM may be used in
tandem with the DCM by utilizing the automatic search procedure to
arrive at a confirmatory model which may inform DCM models.
However, as demonstrated in the present paper, the two approaches
may yield different results. This is partly because integral to the DCM
is the inclusion of information about the neuronal-hemodynamic
relationship whereas the euSEM does not make any assumptions
regarding the relationship between the vascular response obtained
from the BOLD signal and neural activity. For this reason, the extended
unified SEM may be an appropriate alternative for researchers
wishing to remain agnostic regarding this relationship.

The final benefit offered by the euSEM is the simultaneous
estimation of lagged and contemporaneous relationships. The euSEM
results likely differ from the DCM because the DCM does not directly
model relations occurring at the lag time associated with scans. Prior
research has demonstrated the biases introduced when both sources of
variation are not considered (Gates et al., 2010; Kim et al, 2007). Still,
researchers must be careful not to assign causality solely based on
establishing temporal ordering of BOLD activity among ROIs because
delays in BOLD response to stimuli vary across regions and subjects
(Lindquist, 2008; Robinson et al., 2010). The relationship between the
BOLD signal and neuronal activity remains poorly understood (de Marco
et al, 2009) and correlated changes in BOLD responses may be artifacts
of differences in ROIs' physiology. Indeed, evidence suggests that the
delay between neural activity and vascular response differ by regions
(Vazquez et al.,, 2006). Thus, one must be careful when suggesting
causality whenever using BOLD data. Future research needs to continue
examining how to best take into account differences in BOLD responses
when modeling connectivity patterns.

Acknowledgments

This work was supported by a National Science Foundation grant
(0852147).

References

Ashburner, ]., Neelin, P., Collins, D.L., Evans, A., Friston, K., 1997. Incorporating prior
knowledge into image registration. Neuroimage 6 (4), 344-352.

Bekker, P.A., Merckens, A., Wansbeek, T.J., 1994. Identification, equivalent models, and
computer algebra. Academic Press, Boston.

Brown, T. A. 2006. Confirmatory Factor Analysis for Applied Research. Gilford Press.
New York.

Chow, S.M., Ho, M.R., Hamaker, E.L., Dolan, C.V., 2010. Equivalence and differences
between structural equation modeling and state-space modeling techniques.
Struct. Equ. Model.: Multi. J. 17, 303-332.

Cronbach, L.J., 1987. Statistical tests for moderator variables: flaws in analyses recently
proposed. Psychol. Bull. 102, 414-417.

de Marco, G., Devauchelle, B., Berquin, P., 2009. Brain functioning modeling, what do we
measure with fMRI data? Neurosci. Res. 64, 12-19.

Fnaiech, F., Ljung, L., 1987. Recursive identification of bilinear systems. Int. J. Control 45,
453-470.

Friston, KJ., 2007. Dynamic causal modeling. In: Friston, KJ., Ashburner, ].T., Kiebel, S.J.,
Nichols, T.E., Penny, W.D. (Eds.), Statistical parametric mapping: the analysis of
functional brain images. Amsterdam: Academic Press, pp. 541-560.

Friston, K.J., Stephan, K., 2007. Modeling brain responses. In: Friston, K.J.,
Ashburner, ].T., Kiebel, S.J., Nichols, T.E., Penny, W.D. (Eds.), Statistical
parametric mapping: the analysis of functional brain images. Academic Press,
Amsterdam, pp. 32-45.

Friston, KJ., Holmes, A.P., Poline, ].B., Grasby, P.J., Williams, S.C., Frackowiak, R.S., Turner,
R., 1995. Analysis of fMRI time-series revisited. Neuroimage 2, 45-53.

Friston, K.J., Buechel, C., Fink, G.R.,, Morris, J., Rolls, E., Dolan, R.J., 1997.
Psychophysiological and modulatory interactions in neuroimaging. Neuroimage
6, 218-229.

Gates, K.M., Molenaar, P.C.M., Hillary, F.,, Ram., N., & Rovine, M., 2010. Automatic search
for fMRI connectivity mapping: An alternative to Granger causality testing using
formal equivalences between SEM path modeling, VAR, and unified SEM. Neuro-
Image 53, 1118-1125.

Genova, H.M,, Hillary, F.G., Wylie, G., Rypma, B., Deluca, J., 2009. Examination of
processing speed deficits in multiple sclerosis using functional magnetic resonance
imaging. J. Int. Neuropsychol. Soc. 15, 383-393.

Goebel, R., Roebroeck, A., Kim, D.S., Formisano, E., 2003. Investigating directed cortical
interactions in time-resolved fMRI data using vector autoregressive modeling and
Granger causality mapping. Magn. Reson. Imaging 21, 1251-1261.

Hamaker, E.L.,, Dolan, C.V., Molenaar, P.C.M., 2002. On the nature of SEM estimates of
ARMA parameters. Struct. Equ. Model. 9, 347-368.

Harrison, L., Stephen, K., Friston, K., 2007. Effective connectivity. In: Friston, KJ.,
Ashburner, ].T., Kiebel, SJ., Nichols, T.E., Penny, W.D. (Eds.), Statistical parametric
mapping: the analysis of functional brain images. Academic Press, Amsterdam, pp.
508-521.

Heyde, C.C., 1997. Quasi-likelihood and its application: a general approach to optimal
parameter estimation. Springer, New York.

Hillary, F.G., Genova, H.M., Medaglia, ].M,, Fitzpatrick, N.M., Chiou, K.S., Wardecker, B.M.,
DeLuca, J., 2010. Speed of information processing deficits in traumatic brain injury:
is less brain more? Brain Imaging Behav. 4, 141-154.

Hu, L., Bentler, P.M. 1998. Fit indices in covariance structure modeling: sensitivity to
underparameterized model misspecification. Psychol. Methods 3, 424-453.

Kenny, D.A., McCoach, D.B., 2003. Effect of the number of variables on measures fit in
structural equation modeling. Struct. Equ. Model.: Multi. J. 10, 333-351.

Kim, J., Zhu, W., Chang, L., Bentler, P.M., Ernst, T., 2007. Unified structural equation
modeling approach for the analysis of multisubject, multivariate functional MRI
data. Hum. Brain Mapp. 28, 85-93.

Lindquist, M.A., 2008. The statistical analysis of fMRI data. Stat. Sci. 23, 439-464.

Liitkepohl, Helmut, 2005. New introduction to multiple time series analysis. Springer,
Berlin.

Mathews, V.J., Sicuranza, G.L., 2000. Polynomial signal processing. John Wiley & Sons,
Chichester, England.

McIntosh, A.R., Gonzalez-Lima, F., 1994. Structural equation modeling and its
application to network analysis in functional brain imaging. Hum. Brain Mapp. 2,
2-22.

Raichle, MLE., Snyder, A.Z., 2007. A default mode of brain function: a brief history of an
evolving idea. Neuroimage 37, 1083-1090.

Robinson, L.F., Wager, T., Lindquist, M., 2010. Change point estimation in multi-subject
fMRI studies. Neuroimage 49, 1581-1592.

Rypma, B., Berger, J.S., Prabhakaran, V., Bly, B.M., Kimberg, D.Y., Biswal, B.B., D'Esposito,
M., 2006. Neural correlates of cognitive efficiency. Neuroimage 33, 969-979.

Sarty, G.E., 2007. Computational brain activity maps from fMRI time-series images.
Cambridge University Press, New York.

Schermelleh-Engel, K., Moosbrugger, H., Miiller, H., 2003. Evaluating the fit of structural
equation models: Descriptive goodness-of-fit measures. Methods Psychol. Res.
Online 8, 23-74.

Smith, A., 1982. Symbol Digits Modalities Test. Western Psychological Services, Los
Angeles, CA.

Sporns, O., Chialvo, D.R,, Kaiser, M., Hilgetag, C.C., 2004. Organization, development, and
function of complex brain networks. Trends Cogn. Sci. 8, 418-426.

Stephan, K.E., Penny, W.D., Moran, R.J., den Ouden, H.E.M., Daunizeau, J., Friston,
KJ., 2010. Ten simple rules for dynamic causal modeling. Neuroimage 49,
3099-3109.

Tononi, G., Edelman, G.M., Sporns, 0., 1998. Complexity and coherency: integrating
information in the brain. Trends Cogn. Sci. 2, 474-484.

Vazquez, A.L, Cohen, E.R,, Gulani, V., Hernandez-Garcia, L., Zheng, Y., Lee, G.R., Kim, S.G.,
Grotberg, ].B., Noll, D.C., 2006. Vascular dynamics and bold fMRI: Cbf level effects
and analysis considerations. Neuroimage 32, 1642-1655.



	Extended unified SEM approach for modeling event-related fMRI data
	Current approaches for effective connectivity mapping
	Extended unified SEM
	Formal specification of the euSEM
	Application
	Monte Carlo simulations
	Empirical data example: rapid processing task
	Procedure
	MRI data processing
	Analysis of MRI data
	Results

	Comparing extended unified SEMs with dynamic causal models

	Discussion
	Acknowledgments
	References


