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ABSTRACT

The first few days of an attempt to quit smoking are marked by impairments in cognitive domains, such as working
memory and attention. These cognitive impairments have been linked to increased risk for relapse. Little is known about
individual differences in the cognitive impairments that accompany deprivation or the neural processing reflected in
those differences. In order to address this knowledge gap, we collected functional magnetic resonance imaging (fMRI)
data from 118 nicotine-deprived smokers while they performed a verbal n-back task. We predicted better performance
would be associated with more efficient patterns of brain activation and effective connectivity. Results indicated that
performance was positively related to load-related activation in the left dorsolateral prefrontal cortex and the left lateral
premotor cortex. Additionally, effective connectivity patterns differed as a function of performance, with more accurate
participants having simpler, more parsimonious network models than did worse participants. Cognitive efficiency is
typically thought of as less neural activation for equal or superior behavioral performance. Taken together, findings
suggest cognitive efficiency should not be viewed solely in terms of amount of activation but that both the magnitude
of activation within and degree of covariation between task-critical structures must be considered. This research
highlights the benefit of combining traditional fMRI analysis with newer methods for modeling brain connectivity.
These results suggest a possible role for indices of network functioning in assessing relapse risk in quitting smokers as

well as offer potentially useful targets for novel intervention strategies.
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INTRODUCTION

For quitting smokers, the beginning of a cessation
attempt is often the hardest. Hughes, Keely & Naud
(2004) found that most relapse occurred within the first
8 days of a quit attempt. In a different sample, 50% of
those who eventually relapsed did so within the first 24
hours (Allen et al. 2008). During the initial hours and
days after quitting, abstinent smokers experience reduced
cognitive functioning (Parrott etal. 1996; Hughes
2007). In particular, working memory and attention are
profoundly affected by nicotine deprivation (e.g. Shiffman
et al. 2006; Loughead et al. 2009; Sweet et al. 2010). For
example, Mendrek et al. (2006) reported that abstinent
smokers made more errors and took longer to respond
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than non-abstinent smokers in a 2-back version of the
n-back working memory task. The deleterious effects of
nicotine deprivation on cognition likely influence relapse
risk. Consistent with this view, Patterson et al. (2010)
found that slower reaction time during an n-back task
(indicative of poorer working memory functioning) fol-
lowing 3 days of nicotine abstinence predicted faster
return to smoking during a subsequent period in which
participants were paid to remain abstinent.

Finn's (2002) cognitive-motivational theory offers
a useful model for understanding how attention and
working memory influence smoking behavior and
relapse. Persons with greater capacity are better able to
preferentially attend to less salient, future consequences
of decisions over more salient, immediately rewarding
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choices. Also, more capacity should facilitate greater
mental manipulation of information, thus allowing one
to reflect and deliberate on one’s choices. Finally, greater
capacity should also enable extended deliberations and
increased dual-tasking ability (e.g. recalling abstinence
goals while tempted).

Collectively, studies indicate that smokers have
attenuated attentional control and working memory
during the initial hours of a quit attempt and that this
reduced functioning may play an important role in con-
tributing to relapse (Hughes 2007; Allen et al. 2008;
Patterson et al. 2010; see also Goldstein & Volkow 2011).
It is therefore critical to understand how cognition func-
tions in these persons during this risky time period. In
particular, characterizing individual variability in cogni-
tion while abstinent may be helpful in understanding dif-
ferences in susceptibility to relapse. Neuro-imaging is
uniquely poised to address this issue because it allows
researchers to examine the neural dynamics supporting
cognitive processes, thereby providing insight into the
mechanisms that underlie disparities in performance
across individuals.

Here, we used fMRI to examine variability in cogni-
tive performance and patterns of brain activation
among nicotine-deprived smokers during the perform-
ance of an n-back working memory task. The n-back is
ideal for exploring cognitive functioning because it pro-
duces robust and consistent patterns of brain activation
(Owen et al. 2005). Furthermore, the n-back allows
one to vary memory load. This provides a high-load/
minimal-load contrast, which presumably closely resem-
bles the task of a quitting smoker who must increasingly
utilize cognitive processes in order to remain abstinent
during tempting episodes. Accordingly, individual differ-
ences in one’s ability to engage these resources during
the n-back task may relate to one’s ability to manage the
urge to smoke.

Several studies have observed a paradoxical relation-
ship between brain activation and effective use of cogni-
tive processes, such that successful processing is related
to attenuated neural activity (e.g. Nakamura, Hillary &
Biswal 2009), perhaps because higher performing par-
ticipants utilize cognitive resources more efficiently (e.g.
Jaeggi et al. 2007). These patterns are broadly consistent
with research demonstrating practice-related reductions
in brain activation following extensive performance of
various cognitive tasks (e.g. Landau et al. 2004; Chein &
Schneider 2005). Taken together, these lines of research
suggest that level of performance is inversely related to
the magnitude of task-induced activation in areas of the
brain supporting domain-general processes (e.g. atten-
tion and working memory). Accordingly, we predicted
that n-back performance and brain activation would be
negatively related among deprived smokers.
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Furthermore, we hypothesized that examining the
nature of associations between areas of the brain linked to
attention and working memory—above and beyond
assessing differences in the mean activation level within
brain regions in isolation—would be particularly
informative regarding the neurocognitive mechanisms
that underlie differences in cognitive performance (e.g.
McIntosh 2000; Sporns 2011). There is some evidence
that inter-individual variability in cognitive performance
is related to the efficiency of functional brain networks
(operationalized as the number and strength of connec-
tions between brain areas). For instance, on a speeded
processing task, slower participants exhibited more inter-
regional influences than faster participants (Rypma et al.
2006). This was interpreted as indicating that slower
participants had fewer direct connections between areas
supporting cognitive processing and thus more indirect
(and total overall) connections.

A primary goal of the current study was to test the
hypothesis that similar network-related differences
underlie variability in cognitive task performance among
nicotine-deprived smokers. To test this prediction, we
explored the association between behavioral perform-
ance and effective connectivity (Friston 1994, 2011)
during the n-back task using unified structural equation
modeling (uSEM; Kim et al. 2007; Gates et al. 2010).
uSEM combines traditional structural equation modeling
and vector auto-regression to arrive at more accurate
structural models (see Supporting Information Appendix
S1 for more information about uSEM).

Model identification was conducted using Group
Iterative Multiple Model Estimation (GIMME; Gates &
Molenaar 2012), a state-of-the-art method for arriving at
reliable individual-level connectivity maps by using
shared information across the sample. In a first step,
GIMME arrives at a valid group-level map. For this
study, the most important feature of GIMME surrounds
its recovery of individual-level networks in a second step.
GIMME improves upon individual-level approaches by
using the group-level connections as a basis for semi-
confirmatory search. GIMME has demonstrated more
accurate recovery of individual-level networks than
most other popular methods (see Gates & Molenaar
2012; for more information about our rationale and
implementation of GIMME, see Supporting Information
Appendix S1).

In summary, we sought to better delineate individual
differences in the cortical networks underlying cognitive
functioning among nicotine-deprived smokers. We pre-
dicted that better performance would be associated with
more efficient patterns of task-related brain activity. Spe-
cifically, we hypothesized that brain network complexity
would be negatively related to task performance. Partici-
pants were abstinent from nicotine for 12 hours prior to
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the imaging visit. As roughly half of all relapse occurs
within 24-hours of a quit attempt (Allen et al. 2008),
this manipulation offered as a useful model of cognitive
functioning during a high-risk period during smoking
cessation.

METHODS
Participants

Participants were drawn from two fMRI studies. Study 1
(Wilson, Sayette & Fiez 2012a) examined the effects of
quitting motivation and smoking opportunity on cue-
elicited neural responses; the study included both males
and females and smokers who were and who were not
motivated to quit smoking. Study 2 (Wilson, Sayette, &
Fiez 2012b) examined neural responses associated
with different strategies for coping with a smoking cue
coupled with the opportunity to smoke; the study
included male smokers who were motivated to quit
smoking. For both, participants had to report smoking an
average of 15—40 cigarettes/day for the past 24 months
and had to be right-handed.

One hundred eighteen participants (77 from study 1
and 41 from study 2) were included in the present
analyses. Sample characteristics are reported in Table 1.
As expected, the gender distribution of the samples
selected from study 1 and study 2 differed significantly,
x’(1, N=118)=22.4; P<0.001. Additionally, the
sample from study 2 was older [t(116) = 2.04, P = 0.04]
and had a lower postdeprivation carbon monoxide (CO)
reading [t(116) = 2.63, P=0.01] than the sample from
study 1, but mean differences in these variables were
modest (see Table 1). Samples did not differ in baseline
CO, cigarettes/day, years of education, level of nicotine
dependence [as assessed with the Fagerstrom Test for
Nicotine Dependence (FTND); Heatherton, Kozlowski,
Frecker, & Fagerstrom 1991], prescan self-reported
craving (assessed using a single-item 0-100 scale), or
primary behavioral or neural experimental measures
(Ps > 0.06). Smokers who were motivated to quit did not
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differ from non-motivated smokers in n-back perform-
(Ps>0.37).
Informed consent was obtained from all participants, and

ance or in primary neural measures

procedures were approved by the local Institutional
Review Board.

Baseline measures

During a baseline assessment, information regarding
demographics and smoking patterns were assessed with
standard forms (Sayette et al. 2001). Participants also
completed questionnaires and tasks assessing several
constructs, including level of nicotine dependence,
smoking abstinence self-efficacy, trait self-control, affect
and socially desirable responding. These data are not a
focus of the present study (see Wilson et al. 2012a).

N-back task

Participants performed several blocks of a verbal n-back
task while fMRI data were acquired. During each
36-second block, a randomly selected set of 12 letters
were presented individually (500 ms stimulus duration,
2500 ms interstimulus interval). Participants performed
two versions of the task that varied in working memory
load: a control version of the task with minimal memory
requirements (O-back), during which participants were
instructed to press a button with their right index finger if
the letter ‘X" appeared; and a version with comparatively
high memory load (3-back), during which participants
were instructed to similarly press a button if the currently
presented letter matched the letter presented three items
previously. See Supporting Information Appendix S1 for
additional task details.

Procedure

Participants completed two sessions, which are described
in detail elsewhere (Wilson et al. 2012a,b). Briefly, for
both studies, those eligible based upon a telephone
screening were scheduled for an initial baseline session
during which questionnaires and tasks were adminis-
tered. For study 2, participants were trained to use one of

Table 1 Sample characteristics.

Full sample Study 1 Study 2
m=118) m=77) (n=41)
Percent male 74 60 100
Percent quitting-motivated 69 52 100
Mean age (SD) 30.8 (7.9) 29.7 (7.3) 32.8 (8.7)
Mean years of formal education (SD) 12.8 (2.1) 12.8 (2.4) 12.8 (1.6)
Mean cigarettes/day (SD) 19.8 (4.9) 19.7 (5.2) 20.1 (4.3)
Mean FTND score (SD) 4.9 (1.6) 4.9 (1.6) 4.6 (1.6)
Pre-scan urge to smoke (0-100) (SD)  63.9 (29.7)  64.8 (25.8) 62.3 (30.7)
Baseline CO (SD) 29.7 (12.6) 28.7(12.9) 31.7 (11.9)
Experimental CO (SD) 11.9 (5.3) 11.1 (4.9) 13.7 (5.8)
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two strategies for coping with smoking cue exposure. Par-
ticipants then were scheduled for the experimental
session. They were instructed to abstain from smoking
and from using any nicotine-containing products for at
least 12-hours prior to the experiment and that compli-
ance would be verified with a CO sample.

Upon arrival for the experimental session, which was
held within 2 weeks of the baseline session, participants
reported the last time they smoked, and CO was measured
to check compliance with deprivation instructions. Par-
ticipants needed a CO level that was at least 50% lower
than their baseline, a cutoff based upon research using
similar samples and procedures (e.g. Sayette et al. 2008).
Participants rated their urge to smoke and were informed
about whether or not they would be permitted to smoke
during the study. Importantly, participants told that they
could and could not smoke did not differ in self-reported
urge to smoke, n-back performance, brain activation, or
our primary measure of neural efficiency (Ps> 0.09).
After the collection of anatomical images, participants
completed the verbal n-back task. Subsequently, par-
ticipants completed a cigarette cue exposure task, the
results from which are reported elsewhere (Wilson et al.
2012a,b). Following the cue exposure task, participants
were removed from the scanner for a brief break (and
were permitted to smoke, if applicable), after which they
completed post-task questionnaires and were debriefed.

fMRI methods

Scanning was conducted using a 3-Tesla Siemens Allegra
magnet (Siemens Corporation, New York, NY, USA). Prior
to functional scanning, a 40 slice oblique-axial anatomi-
cal series (3.125 x 3.125 x 3.0 mm voxels) was obtained
using a T2-weighted pulse sequence. Additionally, a high-
resolution (1 x1x 1 mm voxels), three-dimensional
structural volume was collected using an MPRAGE
sequence. Next, functional images were acquired in the
same plane as the 40-slice anatomical series with cover-
age limited to the 38 center slices using a one-shot EPI
pulse sequence [repetition time (TR)= 2000 ms, echo
time = 25 ms, field of view =20 cm, flip angle = 79°].
Several preprocessing steps were employed to correct for
artifacts and to account for individual differences in
anatomy prior to analyzing fMRI data (see Supporting

Information Appendix S1 for details).

fMRI data analysis
Region of interest (ROI) selection

The primary aim of analysis was to examine the relation-
ship between behavioral performance and patterns of
activation among brain regions sensitive to increasing
demands during n-back task performance. In order to
identify regions exhibiting load-dependent increases in
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activation, a two-level random-effects general linear
model (GLM) was implemented on a voxel-wise basis
using Analysis of Functional NeuroImages (AFNI) 3dDe-
convolve (Cox 1996). First, predictors for each n-back
condition were entered into a GLM to obtain parameter
estimates (i.e. beta coefficients) for each participant. The
resulting beta weight estimates were entered into a
second-level paired t-test in order to generate regions
exhibiting a main effect of memory load (i.e. 3-back
versus 0-back). The voxel-wise significance threshold was
set at P < 1 x 107'® for this contrast, with a spatial extent
threshold of 10 contiguous voxels. [Based upon Monte
Carlo simulations conducted using AFNI AlphaSim (Cox
1996), it was determined that this yielded a corrected
map-wise false positive rate of P <0.001.] Data from
regions identified in this contrast were extracted for inclu-
sion in subsequent analysis, described below.

Examining performance-related differences in activation
within independent ROIs

To examine the relationship between behavioral per-
formance and load-dependent activation during the
n-back task, additional analyses were conducted on data
extracted from the ROIs identified using the procedure
described above. Specifically, linear regression was con-
ducted for each ROI, with mean load-related change in
activation for significant voxels in the region as the inde-
pendent measure and 3-back performance as the
dependent factor. As urge to smoke was unrelated to
brain activation (Ps> 0.05), it was not included as a
covariate.

Obtaining effective connectivity networks using uSEM
and GIMME

Connectivity patterns among the seven nodes extracted
using the above method was determined using uSEM
(Kim et al. 2007) with models identified using GIMME
(Gates & Molenaar 2012; see Supporting Information
Appendix S1 for additional details). As described earlier,
uSEM considers both contemporaneous and ‘lagged’ (i.e.
ROI status predicting an ROI's status at one TR later)
relationships. Including lagged relationships in the model
reduces statistical bias (Kim et al. 2007; Gates et al.
2010) that would otherwise distort the contemporane-
ous relationships; they do not by themselves represent
any interpretable neuronal activity (i.e. the utility of
lagged paths are that they enhance the reliability of the
contemporaneous model).

Model selection at group and individual levels were
conducted using the GIMME program, which has been
found to arrive at reliable parameter estimates at much
higher rates than most effective connectivity approaches
(Gates & Molenaar 2012). First, Lagrange multiplier
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equivalents (Sorbom 1989) are used to identify which
path (or connection), if freed, would optimally improve
model fits across the majority of individuals (set at 75% as
informed by the power to detect connections in previous
simulations studies). The model is pruned by eliminating
the connections which, because of the freeing up of other
connections, became non-significant for the majority of
individuals.

A primary goal of the current study was to character-
ize the relationship between variability in cognitive per-
formance and characteristics of effective connectivity
among task-related brain regions in nicotine-deprived
smokers. Because we sought to explore brain—behavior
relationships across a broad range of performance, we
divided participants from the composite sample into quar-
tiles based upon their performance on the n-back task and
compared patterns of effective connectivity across these
subgroups. As we were primarily interested in modeling
the ability to marshal cognitive resources under very
difficult circumstances (e.g. during times of cognitive
deficiency), we categorized individuals based upon their
performance during the 3-back condition. Quartile sub-
groups were formed using the signal detection metric
d-prime (Snodgrass & Corwin 1988), which takes into
account both true positives and false positives to estimate
one’s ability to distinguish the proper target.

The GIMME program was altered slightly to enable
subgroup models at each quartile level. As above, the
paths that would optimally improve the majority of indi-
viduals’" maps were identified in an iterative manner.
However, in this step, this search was done within each
subgroup using the group map as a foundation. As dem-
onstrated in Gates and Molenaar (2012), only paths that
truly exist at the group levels will surface using this pro-
cedure. Hence, the group and subgroup maps will only be
as complex as the true data are for that subgroup. Finally,
individual-level models were estimated in a semi-
confirmatory manner, using the subgroup structure as a
starting point and Lagrange multiplier equivalents to
determine proper path selection (see Supporting Informa-
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tion Appendix S1 for details). The selection process favors
parsimonious models; the final models will be only as
complex as necessary for that individual.

Examining performance-related differences in
connectivity maps

To provide a quantitative test of our primary hypothesis
that brain networks are less complex for individuals with
higher performance scores, we compared, across quar-
tiles, the number of contemporaneous effects found for
individuals’ networks using analysis of variance. The
number of contemporaneous paths in individual net-
works provides an index of the overall complexity of each
model, with more parsimonious networks suggesting
greater efficiency.

RESULTS
Behavioral results

Performance on the n-back task is presented in Table 2.
Paired samples t-tests confirmed that participants had
higher accuracy and d-prime scores in the 0-back condi-
tion than in the 3-back condition [t(117)=12,
P <0.001, and t(117)=13.9, P<0.001, respectively].
Also, participants were slower in the 3-back condition
compared with the O-back condition, t(117)=-12.4,
P <0.001. These results indicate that the 3-back condi-
tion was more difficult than the O-back condition.

fMRI results
Regions exhibiting a main effect of load

Stereotaxic coordinates for the seven brain regions exhib-
iting a main effect of memory load are presented in
Table 3; regions are depicted in Fig. 1. Consistent with
expectations, this set included the main brain areas
identified as sensitive to increases in working memory
load in prior studies using the n-back and related tasks.
For each ROI, activation during the 3-back condition was

Table 2 Mean (SD) performance on the

n-back. Quartile Condition Accuracy (%) d-prime RT (msec)
<25% 0-back 92.6 (7.9) 5(1.2) 734.2 (221.4)
3-back 68 (8) 0. 78 (1) 838.1(239)
50% 0-back 94.1 (7.6) 3(1.6) 611.2 (201.7)
3-back 80.1(1.8) 5(0.83) 804.3 (214.6)
75% 0-back 94.3 (8.4) 4(1.7) 666 (200.1)
3-back 86.4 (1.8) 2(0.87) 847.6 (188.7)
>75% 0-back 96.1 (4) 8(0.78) 667.3 (134.1)
3-back 94 (3.4) 4(0.95) 879.8 (177.8)
Full sample 0-back 94.2 (7.3) 4(1.4) 670.4 (197.7)
3-back 81.4 (10.5) 8(1.3) 840.4 (207.2)
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Table 3 Regions exhibiting a significant

main effect of memory load (3-back versus MNI Coordinates Average
0-back).
Region BA Size (mm’) x y A F(1,116)*
Dorsal ACC/SMA 32/6 5889 -1 22 46 1664
Left DLPFC 9 2168 -43 25 32 139
Right lateral premotor 6 1992 34 8 54 1233
Right inferior parietal lobule 40 1113 47 =51 43 122.1
Right DLPFC 9 762 41 29 34 1219
Left inferior parietal lobule 40 615 -38 -63 46 125.7
Left lateral premotor 6 615 -29 9 58 118.6

*All P values < 0.001.

Note. Coordinates are given for local maxima of activation cluster. ACC = anterior cingulate cortex;
BA =Brodmann's area; DLPFC = dorsolateral prefrontal cortex; SMA = supplementary motor

area.

Anterior

Figure | Voxels exhibiting a significant main effect of memory load
(3-back versus O-back). Regions of voxels are numbered as follows:
| =anterior cingulate cortex/supplementary motor area; 2 = left dor-
solateral prefrontal cortex; 3 =right dorsolateral prefrontal cortex;
4=left lateral premotor cortex; 5=right lateral premotor cortex;
6 =left inferior parietal lobule; 7 =right inferior parietal lobule

significantly greater than activation during the 0-back
condition (see Table 3 for statistics).

Association between performance and activation
within ROIs

In order to determine the relationship between load-
dependent activation within the ROIs and performance
on the n-back, seven linear regressions were conducted
with 3-back d-prime as the dependent factor and brain
activation (3-back minus 0-back) as the independent
factor. The Bonferroni adjustment was used to control for
possible Type I errors associated with multiple compari-
sons, yielding a corrected alpha of P <0.007 (0.05/7).
The results of these regressions are presented in Table 4.
Contrary to predictions, task-related activation was posi-
tively associated with n-back performance for two regions
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Table 4 Association between n-back performance and brain
activation (3-back minus O-back).

Correlation with

Region d-prime (Pearson’sr) P value
Dorsal ACC/SMA 0.16 0.09
Left DLPFC 0.30 0.001*
Right lateral premotor 0.19 0.04
Right inferior parietal lobule — 0.22 0.02
Right DLPFC 0.17 0.07
Left inferior parietal lobule 0.20 0.03
Left lateral premotor 0.27 0.003*

*Statistically significant after Bonferroni adjustment (corrected alpha of
P <0.007).

Note. ACC = anterior cingulate cortex; BA = Brodmann's area; DLPFC =
dorsolateral prefrontal cortex; SMA = supplementary motor area.

after applying the Bonferroni correction: left dorsolateral
prefrontal cortex (DLPFC), F(1,116)=11, P=0.001,
and left lateral premotor cortex, F(1,116)=9.1,

P=0.003.

Association between performance and effective connectivity
among ROIs at the subgroup level

Subgroup-level connectivity maps for each quartile are
depicted in Fig. 2. As shown, the top performing group
had no additional contemporaneous paths describing
their processing beyond those present in the group model
for the entire sample. In accordance with our prediction,
the average number of contemporaneous paths for
individuals differed significantly between the quartiles,
F(3,114)=7.29, P<0.001. A planned
revealed a significant linear trend (P < 0.001), such that

contrast

the number of contemporaneous connections decreased
from the lowest to the best performing subgroups
[mean (standard deviation) number of contempora-
neous connections per quartile subgroup: Q1/bottom
quartile = 14.0 (1.5); Q2/lower middle quartile=13.7
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Legend

e CONtemporaneous
path
rwnmr lagged path

For Quartile Models:
== grOUP Path
== subgroup path

Figure 2 Schematic of group model and subgroup models based on d-prime quartile. Q4=top performing quartile; Q3 =upper middle
quartile; Q2 =lower middle quartile; QI =bottom quartile. DLPFC =dorsolateral prefrontal cortex; ACC=anterior cingulate cortex/

supplementary motor area; IPMC = lateral premotor cortex; iPar=inferior parietal lobule

(1.8); Q3/upper middle quartile=13.0 (1.7); Q4/top
quartile = 12.0 (1.8)]. Thus, as hypothesized, network
complexity was inversely related to cognitive perform-
ance. To explore whether additional relevant factors
were related to brain activation and/or network charac-
teristics, we conducted post hoc tests examining the asso-
ciation between these variables and smoking-related
characteristics (i.e. smoking urge, cigarettes/day and
nicotine dependence). Of these, there was a slight but
significant negative effect of urge to smoke on the number
of connections [F(1, 116)=5.36, P=0.02], but this
effect did not survive multiple comparisons correction.
No remaining effects were significant (Ps > 0.4).

DISCUSSION

The overarching goal of this study was to examine the
association between patterns of brain activation and
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performance during a demanding cognitive task in
nicotine-deprived smokers. Our primary objective was to
test the hypothesis that deprived smokers who were more
successful at the task would exhibit more efficient pat-
terns of brain activation, relative to those who were less
successful. Related to this aim, our major finding was
that, consistent with our prediction, network complexity
(quantified as the number of contemporaneous connec-
tions among task-related brain regions) was strongly
negatively correlated with performance during the most
difficult condition of the n-back working memory task.
This pattern is reminiscent of the differences between
unpracticed and practiced brain networks described by
Chein & Schneider (2005). Thus, in line with previous
research (e.g. Rypma et al. 2006), efficient inter-regional
communication (coupled with effective intra-regional
processing) appears to be critical for optimal performance
during a demanding cognitive task.
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Interestingly, while deprived smokers with compara-
tively better performance during the n-back exhibited less
complex patterns of effective connectivity than those
with poorer performance, the former also tended to
exhibit greater activation of task-related brain regions
than the latter (an effect that survived a correction for
multiple comparisons in two regions: the left DLPFC and
left lateral premotor cortex). This pattern runs counter to
our hypothesis that superior functioning would be linked
to reduced activation and underscores the intricacy of
load-activation-performance associations. Regarding the
latter, Rypma, Berger & D’Esposito (2002) found that
individuals with relatively better behavioral performance
demonstrated larger increases in DLPFC activation under
conditions of escalating memory load—but less activa-
tion of the DLPFC overall—than participants with rela-
tively poorer performance. Their results suggest that it is
the ability to recruit additional resources as demands
intensify, rather than the absolute magnitude of activa-
tion, that is important for task success. This capacity
is not unbounded; rather, the degree to which task
demands drive increases in brain activation is con-
strained such that increasing load beyond some threshold
results in a decrease (e.g. Jaeggi et al. 2007) or plateau
(e.g. Jaeggi et al. 2003) in neural activation.

Previous brain imaging research suggests that nico-
tine deprivation may impair cognition in part by altering
such dynamics; specifically, withdrawal appears to reduce
the ability to recruit additional neurocognitive resources
under heavy demands (e.g. Jacobsen et al. 2007; Kozink
et al. 2010). For instance, Xu et al. (2005) found that
activation of the left DLPFC increased concomitant with
escalations in memory load during the performance of an
n-back task when smokers were minimally deprived but
did not increase with load after participants abstained
from smoking for 14 hours. Results from the current
study suggest that there are likely significant individual
differences in the magnitude of such state-dependent
shifts. More specifically, some deprived smokers appear to
have more resources upon which to call to meet the
demands of very challenging cognitive tasks (leading to
larger increases in the activation of brain areas support-
ing processes required for the task and better perform-
ance) than others.

In addition to highlighting the complicated nature of
the links between performance and intraregional changes
in activation, results from the present study demonstrate
the advantages associated with using advanced statistical
methods, such as uSEM and GIMME, to model brain net-
works. By modeling groups and individuals, we were
able to elucidate performance-related individual differ-
ences that otherwise were undetected through the use of
a standard univariate approach. The use of GIMME, in
particular, ensured that the individual-level effective
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connectivity networks (the basis for testing our primary
hypothesis) were reliable. This task alone is difficult (for
competing techniques, see Smith et al. 2011). By first
detecting signal from noise across individuals to arrive at
a group model and then identifying individual-level con-
nections in addition to these as needed, GIMME offers the
only option to date that has demonstrated ability to arrive
at reliable group and individual networks in the presence
of heterogeneity (Gates & Molenaar 2012). These unique
features of GIMME, when used in combination with a
more standard analytic approach, allowed us to deter-
mine that better performance by nicotine-deprived
smokers was associated with greater within-region acti-
vation but more efficient (i.e. less complex) patterns of
effective connectivity among brain areas during a difficult
cognitive task.

Correlations between n-back performance and load-
related brain activation were significant but modest. We
explored whether other smoking-related variables were
related to n-back performance but found no significant
associations. Most of these factors were also unrelated to
network functioning, with the exception of a modest
association between urge and network efficiency that
failed to survive multiple comparisons correction, as
noted above. We also conducted post hoc analyses to see
if years of education may have impacted cognitive
performance or network dynamics. Education was
unrelated to 3-back d-prime, load-related BOLD response,
and the number of contemporaneous connections
(Ps > 0.1). Future research investigating additional rel-
evant factors that may be linked to task-related brain
activation and/or performance in deprived smokers
would be beneficial.

Regarding craving specifically, while the focus of this
investigation was on cognitive factors during abstinence
and not on craving or withdrawal per se, these phenom-
ena are invariably linked. It is possible that we failed to
find a relationship between craving and performance in
this sample because of insufficient variability in the
former, as the sample consisted entirely of nicotine-
deprived smokers. Ultimately, more research is needed to
identify other factors that contribute to the variability
in network functioning and cognitive performance in
deprived smokers.

In the absence of the ability to elucidate sources for
these individual differences, we can speculate that they
may relate to the cognitive strategies used to complete the
task (cf. Dunlosky & Kane 2007). For example, poorer
performing participants may have used less effective
approaches dependent upon a broader array of support-
ing processes (leading to a greater number of concurrent
associations among task-related regions) than better
performers. More research is needed to determine the
extent to which the additional contemporaneous paths
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exhibited by comparatively poorer performers are related
to differences in strategy use versus other factors.

Regardless of source, the current findings may have
significant clinical implications. As discussed, working
memory and attention appear to be critical for the success
of attempts to quit smoking (Waters et al. 2003; Illkowska
& Engle 2010; Patterson et al. 2010). Accordingly, indi-
viduals with relatively better working memory and atten-
tional functioning (or show less of a decrement in
functioning during acute withdrawal) may be likely to
have better outcomes during a quit attempt than those
with poorer cognitive functioning. This may be particu-
larly true during the initial hours after quitting when
withdrawal-related decrements in cognition are at their
peak (Piasecki et al. 2003a,b; Hughes 2007; Allen et al.
2008). Brain network efficiency may prove to be a useful
target for novel approaches to facilitating smoking
cessation, such as interventions that integrate recently
developed behavioral training strategies for improving
attention and working memory (Morrison & Chein 2011).

One limitation of the study is that brain and behavio-
ral responses were not assessed prior to acute nicotine
deprivation, so we cannot infer how findings were
impacted by withdrawal per se (see Supporting Informa-
tion Appendix S1). While there is abundant evidence
establishing withdrawal-related cognitive impairments in
smokers, this research could be advanced by clarifying
the impact of nicotine deprivation on network function-
ing (e.g. grouping participants by withdrawal symp-
toms). Additionally, although important components of
nicotine withdrawal (e.g. self-reported craving) were
assessed, the study did not include scales specifically
designed to measure nicotine withdrawal syndrome; it is
possible that additional withdrawal-related effects would
have been detected using a more sensitive measure.
Nevertheless, the current findings fill an important role
in illuminating cognitive functioning in the moment, so
to speak, when it is being tested and resources are
thinned. Specifically, we showed that different connectiv-
ity patterns for effortful cognition exist in a population at
risk for relapse. Studies examining the extent to which
these differences relate prospectively to smoking outside
the laboratory would be informative.

In summary, the current study extends previous
research examining effects of nicotine withdrawal on
cognition by demonstrating that there is significant vari-
ability in cognitive performance among deprived smokers
as well as by illuminating neural mechanisms that may
underlie these individual differences. Findings indicate
that, despite evincing greater load-related increases in
brain regions required for the task, deprived smokers with
better performance exhibited more ‘efficient’” patterns of
effective connectivity among brain areas than those with
worse performance.

© 2013 Society for the Study of Addiction
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