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Abstract In this article, the most commonly used algorithms for causal search on

fMRI data are reviewed and discussed, with particular attention paid to aspects of the

algorithms useful for substantive neuroimaging researchers. Classic algorithms, such

as PC and GES, as well as more contemporary algorithms, such as IMaGES–LOFS and

GIMME, are compared and contrasted. One major difference between algorithms, the

use of lagged variables to infer direction vs. the assumption of non-normality to infer

direction is discussed, with eye on the impact those choices have on substantive

findings. The algorithms share some commonalities as well as differences. For

instance, some use lagged variables to assist in ascertaining directionality, whereas

others rely on aspects of non-normality in the data to infer directionality. Attention is

given to the impact of these choices on the reliability of results.

Keywords fMRI � Causal search � Greedy search � DAGs � GIMME � IMaGES �
LiNGAM � DCM

1 Introduction

Functional magnetic resonance imaging, or fMRI, is a neuroimaging technique that

allows researchers to examine the neurological functioning of the brain as measured

by the proxy of blood oxygenation (Huettel et al. 2014). In recent years, there has

been an increasing interest in functional connectivity analysis, or how different
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regions of the brain functionally connect to each other (Sporns et al. 2004). One of

the main end goals of functional connectivity analysis is to determine the set of

causal relations that describe the functional connections within a set of brain

regions, so that researchers can say, for example, that Region A causally influences

Region B. The difficulty with inferring causal relations is twofold. The first

difficulty is that of orientation of a potential causal relation. Having identified that

Region A is associated with Region B, the question then is, does Region A causally

effect Region B, or does Region B causally effect Region A. Second, it is difficult to

infer causal relations between two regions without taking into account the causal

relations between all other regions within a given network. To account for these

difficulties, many methodologists have developed what are termed causal search

procedures, which attempt to infer the network of causal relations between brain

regions. These causal search procedures are what we focus our review on here.

One seminal paper on causal search procedures for fMRI was that of Smith et al.

(2011). This article provided one of the first reviews and evaluations of a variety of

causal search procedures on simulated fMRI data. Therefore, prominent is this

article that the majority of causal search procedures validate themselves on the

Smith et al. (2011) data simulations. The authors simulated fMRI-type data using a

feed-forward balloon model (Friston et al. 2003), which allowed for the explicit

modeling of the BOLD response signal. They then evaluated a variety of causal

search procedures, such as Granger causality (Granger 1969), the PC algorithm

(Spirtes and Glymour 1991), LiNGAM (Shimizu et al. 2006), and GES (Meek

1997). Smith et al. (2011) found that these algorithms were fairly efficient at

determining the presence of an association between variables, but less effective at

orienting that association into a causal relation.

A second prominent review of causal search procedures is that of Mumford and

Ramsey (2014). In their review, the authors provide detailed information as to the

specifics of each algorithm and outline various additional results for several newer

algorithms, such as the IMaGES algorithm (Ramsey et al. 2010) and the GIMME

algorithm (Gates et al. 2010).

Due to the previous thorough reviews of various causal search methods, the

present review balances a mix of technical detail, advice for use on fMRI data, and

descriptions of how these approaches have been used in practice. To that end, we

will not provide detailed descriptions of each of the algorithms, but rather

summarize important aspects of each algorithm that inform practical concerns.

Furthermore, we point out previous uses of each algorithm on fMRI data, and

provide some discussion on the use of each algorithm. This paper provides a

practical guide for selecting algorithms given the qualities of the data and the

research questions at hand.

The structure of this review is as follows: we begin by briefly reviewing

necessary concepts and terminology from fMRI practice, followed by a more

through review of necessary concepts in causal inference. Once these are complete,

we move onto reviewing each of our selected methods in turn. Within each section,

we provide an overview, several technical details, and a discussion as to how each

method can be best used on fMRI data. Finally, we summarize our findings.
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1.1 An overview of fMRI concepts

While an in-depth review of fMRI practice is beyond the scope of this paper, it is

important to understand precisely what type of data fMRI is capable of collecting.

To begin, we need to make a distinction between resting state, block, and event-

related designs. Resting state data are gathered, while a subject is resting within a

scanner, and not doing anything in particular (Biswal et al. 1995; Huettel et al.

2014). By contrast, block and event-related designs have the participant performing

a task within the scanner by responding to some type of stimuli or simply observe

some stimuli. In block designs, the participant is doing something rather consistent

throughout a given time, such as watching a video or doing the same task in rapid

succession. Here, changes that relate to a task are not directly modeled using the

causal search. Researchers may sometimes conduct separate DAG analysis for

different blocks, or compare results from resting state with models obtained from

while an individual was performing a task in a given block. Event-related designs

attempt to identify changes occurring within a given frame of time, and may have

multiple tasks interleaved.

Data obtained during resting state and block designs are the most commonly used

data types when using causal search procedures. Unless otherwise stated, all

methods reviewed here were developed in a resting state or block design context. Of

note, two methods we review, dynamic causal modeling (Friston et al. 2011) and

extended unified SEM in GIMME (Gates and Molenaar 2012; Gates et al. 2011), are

immediately capable of modeling event-related task data directly by modeling how

functional connectivity among brain regions can change in the presence of stimuli

that varies across time. In many cases, all the DAG methods presented here can be

extended to task-based paradigms to examine causal relations within a task session.

For the purposes of this review, we focus on the use of these methods on resting-

state data or block designs, where we do not have to consider the presentation of

tasks.

fMRI data, fundamentally, are a multivariate time series that has undergone a

series of preprocessing steps. We do not concern ourselves with the specifics of

preprocessing, and instead assume that all preprocessing has already been done.

However, it should be noted that choices made during preprocessing can have

significant impacts on the results of a causal search procedure. Specifically,

preprocessing steps that alter the temporal relations between timepoints will change

the associated causal structure. One prime example off this is high-pass and low-

pass filtering (Huettel et al. 2014). These steps in preprocessing remove low-

frequency components that correspond with physiological phenomena, such as

respiration and heartbeat, as well as high-frequency components that correspond to

noise. Obviously, if these steps are not performed, the causal relations between

regions of the brain could be confounded by the systematic physiological noise or

by the higher frequency random noise. However, if the filters are too strict and

remove skewness in the data, then some causal search procedures would miss any

number of causal relations. The Butterworth filter and SPM low-pass filter remove

non-normality that reduces the ability of some approaches to detect connections

(Ramsey et al. 2014). The key concern in preprocessing fMRI data for later use with
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causal search algorithms is that one must remove irrelevant sources of noise, but

preserve the functional relations between regions.

The fMRI time series is initially at the voxel level. These voxels are three-

dimensional volumes that form the smallest unit of resolution the scanner can obtain

(Huettel et al. 2014), typically on the order of 2–5 mm3. In any given fMRI scan,

there are usually several thousand voxels. Most analytic techniques are incapable of

handling that number of dimensions, so what is typically done is combining voxels

into brain regions of interest, or ROIs. There are several methods of doing this, from

using predefined anatomical atlases, such as the canonical Brodmann atlas

(Brodmann 1909), to determining ROIs statistically (Craddock et al. 2012;

Sanchez-Romero 2012). It is these ROIs that are the usual unit of analysis for

causal search procedures. Selection of ROIs and other preprocessing options, such

as motion correction methods, have been shown to have influence on results for any

functional time of fMRI analysis (Power et al. 2011; Weissenbacher et al. 2009).

Given the large scope of this topic, the reader is suggested to evaluate emerging

preprocessing steps and critically consider pipelines prior to conducing DAG

analysis. One clear suggestion of preprocessing steps suggested for use with

functional connectivity can be found in (Power et al. 2014).

Finally, it is worthwhile to note that fMRI does not collect information about the

neurological functioning of brain regions directly, rather fMRI collects the blood

oxygenation-level-dependent signal, or BOLD signal (Logothetis 2008; Huettel

et al. 2014). This signal represents the flow of deoxygenated blood in a particular

region of the brain, and can be considered to be measuring neurological activity

with error. Most causal search procedures are agnostic to what the data are, be it

BOLD signal, or a financial time series, and it is important to keep in mind the

actual unit of analysis when interpreting the results of a causal search procedure.

With fMRI practice being briefly reviewed, we can now turn our attention to

concepts relating to causal search.

1.2 Concepts in causal search

In this review, we will use a network centered approach to discussing causality. As

such we describe the system of causal relations between a set of variables as a

directed graph, an example of which is shown in Fig. 1:

A

DC

B.5

.7

-.1

.2

Fig. 1 Example of a directed
graph representing a causal
structure. Numbers indicate edge
strength on some arbitrary
metric
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A graph such as the one in Fig. 1 is constructed by a set of nodes (here, brain

regions) and a set of directed edges (i.e., connections). These edges represent causal

relations between the variables represented by the nodes. The weights on each edge,

here using an arbitrary scale for illustration purposes, represent the strength of that

causal effect. In this graph, variable A causes variable B, but has no direct causal

relation to variable D. However, due to variable B’s causal relation with variable D,

A will not be marginally independent from variable D.

The algorithms discussed here seek to identify not just the presence of the edge,

but also the direction and the weight. More specifically, the types of causal

structures that are primarily dealt with in causal search are directed acyclic graphs,

which simply mean that there are no cycles within the graph. A cycle makes

interpreting a causal structure difficult, and the causal search algorithms that are

reviewed here typically restrict the causal structure to directed acyclic graphs.

Several of the methods reviewed here, chief of which is the LOFs algorithm

(Ramsey et al. 2011), can also infer undirected connections. Typically, these

undirected connections are inferred when the directionality of the causal relation is

unclear, but it is clear that the variables in question are associated some how.

Directed acyclic graphs that suppose to represent causal structure have also been

called Bayesian networks (Pearl 1986) due to the decomposition of the conditional

probabilities. One important quality of these networks is that of the Causal Markov

condition (Spirtes et al. 1993), which indicates that variables are conditionally

independent of variables not directly or indirectly connected to them. This is to say

that if variable X causally influences variables Y and Z, Causal Markov

Independence states that conditions on X, Y and Z are independent of each other.

Causal DAGs have several other implicit assumptions that are instantiations of

the assumption of causality itself. Key among these for fMRI data is the temporal

nature of causality. Simply put, for Cause A to have Effect B, Cause A must happen

before Effect B (Holland 1986). However, in fMRI causal search procedures, a great

deal of attention is paid to so-called contemporaneous or ‘‘instantaneous’’ causation,

where a causal connection can be oriented between two regions measured at the

same time. When data are sampled at rates far slower than the rate of the actual

process under study, effects often surface as contemporaneous (Granger 1969). This

is the case in fMRI data, where the BOLD signal occurs and is sampled at a

temporal resolution that is far slower than the neuronal activity of interest. In Smith

et al. (2011), the only approaches that correctly recovered the presence of a relation

among brain regions were contemporaneous modeling approaches. For this reason,

only a few of the causal search procedures presented in this review use the

information from previous timepoints, with GIMME (Gates et al. 2010) being the

only one that explicitly uses lagged effects.

One final note of import is that these DAG causal structures make no

distributional assumptions in of themselves. However, certain graphical search

algorithms do require distributional assumptions to be correct (statistically

consistent). For instance, a path diagram from a structural equation model (Bollen

1989) implies a resulting multivariate normal distribution (and could indeed have a

DAG structure), and the LiNGAM algorithms utilize non-normality of the data to

identify directionality (Shimizu et al. 2006). Nonetheless, a basic Bayesian network
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needs not imply any particular family of distributions. We now provide an overview

of the approaches used in the fMRI literature.

2 GES

2.1 Overview

Greedy equivalence search (GES) was developed as a general search procedure

(Meek 1997) for determining causal structure. The algorithm makes modifications

to the graph one edge at a time, an approach that has been found to be simple to

implement, computationally efficient, and one that works well in practice

(Chickering and Meek 2002).

2.2 Details

GES is a score-based algorithm in that it utilizes the Bayesian information criterion

(BIC; Schwarz 1978) to guide model building. The BIC is a model selection index

that approximates a Bayes Factor, and is formed using the log-likelihood of the

model along with a penalty term that reflects the number of parameters in the model.

In GES, improvement of a BIC score with the addition of an edge indicates that the

edge should be included. The algorithm rests heavily on the knowledge that the BIC

is locally consistent, meaning that the BIC will favor the addition of edges that

suggest dependence among variables only if that dependence is in the generative

model (Chickering 2002). GES is a forward selection and backward deletion

approach. It begins by adding edges to an empty graph. Then, GES deletes edges in

a backward search also utilizing the BIC. Note that the removal of edges is only

done after the addition of all edges using the forward search, as opposed to

performing pruning after each individual edge is added (Chickering and Meek

2002).

As specified in Chickering and Meek (2002), the GES algorithm returns a

partially directed acyclic graph (PDAG). These PDAGs consist of oriented causal

relations and undirected associations. The reason why some edges are oriented,

while others are undirected lie in the notion of equivalence classes. Directed

Acyclic Graphs within the same equivalence class are indistinguishable from each

other in terms of their fit to the data, but could have several edges oriented in

different directions (Pearl 2004). This problem with equivalence classes is met

head on with the GES algorithm, in that it orients edges only if they are

determined to have a unique orientation. This can only occur if the two nodes

connected by an edge do not share the same parents (Chickering and Meek 2002).

Using this fact, the GES algorithm returns a set of directed causal relations, and a

set of undirected associations where the direction of any potential causal relation

is unclear.
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2.2.1 Use on fMRI data

Since the algorithm does not inherently include temporal information, it may be

applied to graphs that are static in nature, such as diffusion tensor imaging (DTI).

However, to date, the GES algorithm has only been applied on fMRI data. Studies

have used GES to investigate differences in brain processes among individuals

diagnosed with Autism spectrum disorder (Hanson et al. 2013) and those with

traumatic brain injury (Dobryakova et al. 2015). One study compared a few

Bayesian network search approaches described in the present paper (GES, PC,

Granger causality, and IMaGES) on fMRI data obtained, while participants watched

a video. They found consistency in patterns from the GES and PC algorithms,

concluding that this convergence suggested that they are arriving at some true

underlying pattern of effects (Sun et al. 2012).

The GES algorithm is available from the Tetrad project: http://www.phil.cmu.

edu/tetrad/current.html.

2.2.2 Drawbacks and Limitations

GES requires a large number of timepoints to appropriately recall the true edges and

their directions. Results for lengths of time series typically seen in fMRI might be

unreliable (Mumford and Ramsey 2014). This limits the utility for individual-level

analysis using fMRI data. An approach that utilizes information across individuals

(IMaGES; Ramsey et al. (2010), described below) has been shown to greatly

improve upon this situation (Perez et al. 2010). For this reason, IMaGES is more

commonly used and recommended for fMRI researchers. It should also be noted that

the BIC typically assumes a linear Gaussian likelihood, and the consistency of

selection methods using BIC is not guaranteed when the data are non-normally

distributed.

Finally, as originally proposed GES could only reasonably handle 5–15 variables,

which limits the number of ROIs that can be analyzed in a causal structure. In recent

work, Ramsey (2015), demonstrated that GES can be scaled up to handle millions of

variables in a reasonable amount of time. This would allow GES to comfortably

analyze complete parcellations of the brain.

3 IMaGES

3.1 Overview

IMaGES [Independent Multiple-Sample Greedy Equivalent Search; (Ramsey et al.

2010)] is an extension of the Greedy Equivalent Search Algorithm (Meek 1997) for

multiple subjects. IMaGES pools information from multiple subjects to estimate a

single DAG structure that best fits the data from the multiple subjects. This method

differs from simply concatenating the data from multiple subjects as IMaGES

allows the weights on each edge of the DAG to differ between samples.
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As was mentioned above, the GES algorithm has trouble determining the directionality

of the edges within a given DAG. Ramsey et al. (2010) proposes a further modification of

the IMaGES algorithm to address this issue. In their modification, they propose

systematically backshifting variables in each data set by a certain lag and then running

IMaGES on the resulting set of backshifted data. The analysis then selects the IMaGES run

that demonstrates the best fit. This results in a DAG, where some variables have been

backshifted by a certain amount, while other variables are unmodified. By performing this

backshifting, the analyst can ameliorate timing issues caused by the BOLD signal, where

the timing of one ROI’s signal might be offset from the rest.

3.2 Details

The IMaGES algorithm follows closely its parent algorithm, GES. As noted above,

GES begins with an empty graph and adds edges based on BIC (Schwarz 1978).

IMaGES takes advantage of having multiple data sets, and instead of concatenating

data add edges based on an averaged BIC-type measure, defined as follows:

IMaGESBIC ¼ � 2

m

Xm

i¼1

‘ðDi;GÞ þ cklnðnÞ ð1Þ

where m is the number of data sets, ‘ðDi;GÞ is the maximum log-likelihood of the

model described by the DAG G applied to the data set Di, c is a integer penalty term

set by the analyst, k is the number of free parameters in the model described by

DAG G, and n is the number of timepoints in any data set. Note that this expression

works only if there are equal numbers of timepoints in all data sets, else the

expression will be weighted to account for differing numbers of timepoints for each

subject. It is also important to note that the IMaGES algorithm, such as the GES

algorithm, is a feed-forward then backward prune procedure. Specifically, both

begin with an empty graph, add edges until no improvement can be made, and then

removes all edges that do not result in a decrease in fit.

The penalty term c acts as a penalty to the complexity of the DAG G, and is used

to filter out spurious triangle structures. These triangle structures occur when

X causes Y and Y causes Z, but due to lack of information, a contemporaneous

relation between X and Z emerges. These can be viewed as spurious as they can

result in cycles, which violate causal assumptions. Ramsey et al. (2010) suggest

incrementing c up until triangle structures stop appearing in the graph.

IMaGES has been shown to be a consistent estimator of the graph structure when

the GES would also be consistent. However, conditions for this consistency are quite

strict. Ideally, all subjects would have identical connectivity patterns, but can have

differing strengths of those causal connections. That being said, Ramsey et al. (2010)

notes that IMaGES is robust to mild variation in subject’s connectivity patterns.

3.2.1 Use on MRI data

The IMaGES algorithm is best used on ROI-level data, with multiple individuals’

data sets. Use on voxel-level data is not advised for several reasons. The first is that
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the IMaGES algorithm needs to estimate a maximum likelihood solution for each

graph evaluated for each data set. As Ramsey et al. (2010) points out, this is

typically only feasible for Gaussian distributions, as maximum likelihood estimates

can be obtained quickly. The second reason why IMaGES is best used for ROI-level

data is that the number of causal relations increases exponentially with the number

of variables being evaluated. While IMaGES can quickly evaluate a set of 20 ROIs,

the speed of the algorithm would be several orders of magnitude slower if used on a

voxel-level data set. Finally, voxel-level data have considerably more noise than

ROI-level data, and as such would be much more difficult to evaluate for causal

relations.

There have been several recent uses of the IMaGES algorithm in high impact

journals. One particular example is that of Manelis et al. (2016). They examined

differences in the functional connectivity of the occipital sub-network and a fronto-

parietal-temporo-striatal sub-network for a sample of typical controls, individuals

with bipolar disorder, and individuals with major depressive disorder, under

conditions of win anticipation and loss anticipation. The authors shows significant

differences in overall levels of connection between the diagnostic groups during the

different task settings. This study demonstrates the utility of IMaGES for task- and

group-level analysis.

3.2.2 Drawbacks and limitations

As IMaGES is a greedy search procedure, it is limited in the number of ROIs as well

as the number of subjects it can handle. As originally tested in Ramsey et al. (2010),

IMaGES comfortably handled 10 ROIs. Increasing the number of ROIs past this

will simply be a matter of computation time, rather than some innate weakness of

the algorithm. As IMaGES is based on the GES algorithm, the new scaling of GES

to over a million variables (Ramsey 2015) could be extended to IMaGES, but as of

writing, this has not occurred.

A more pressing limitation is the fact that IMaGES produces a single graph

structure for every subject in the sample. While it does allow different weights on

the edges for each subject, the fact that it hypothesizes the same set of causal

relations for each subject may or may not be a tenable assumption based on the

research question.

IMaGES is available from the TETRAD project (http://www.phil.cmu.edu/tetrad/).

4 LiNGAM, pairwise LiNGAM, ParceLingam, pooled LiNGAM
and LV-LiNGAM

Linear non-gaussian acyclic models (LiNGAM; Shimizu et al. 2006) takes

advantage of the assumption of non-normal error terms to determine the best

fitting directed acyclic graphical model for a single data set. Many methods for

discovering DAG structures use Gaussian error assumptions, which make it difficult

if not impossible to determine the direction of a causal link if no other information is
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present, due to the symmetry of a covariance matrix which uniquely defines a

multivariate Gaussian distribution (this results in an equivalence class of DAGs,

where causal direction of edges are indeterminable Spirtes et al. 1993). The

LiNGAM approach uses the assumption of non-normality to determine the unique

set of directed paths that best describe the given subject’s data set. There have been

several improvements to the original LiNGAM algorithm (pairwise, parceled, and

pooled) that we discuss here.

Pairwise LiNGAM (Hyvärinen et al. 2010) seeks to orient the edges in an already

established undirected graph. This differs from the original LiNGAM approach,

where both the graph structure as well as the edge orientation are estimated by the

same algorithm. Pairwise LiNGAM uses the same assumptions as LiNGAM, that

being the linear non-Gaussian error terms, and orients edges one at a time.

Hyvarinen and Smith (2013) show using the same data from Smith et al. (2011) that

pairwise LiNGAM orients the edges correctly 75% of the time, and that for analysis

of concatenated data, the orientation accuracy was 100%. It is important to note that

this method requires an already established graph structure; however, any algorithm

that can provide an undirected graph structure, such as IMaGES or GES, can be

used in tandem with pairwise LiNGAM.

ParceLiNGAM (Tashiro et al. 2014) is a alteration of the original LiNGAM

algorithm to be robust to latent or unobserved confounders. In simulations,

ParceLiNGAM outperformed both pairwise LiNGAM as well as the original

LiNGAM algorithm for the majority of the simulated conditions.

Pooled LiNGAM (Xu et al. 2014) is a more recent development. The method

constructs a set of aggregate ‘‘subjects’’ by randomly selecting subjects and then

concatenating the data sets in a random order. The original LiNGAM method is then

run on these aggregate data sets and the results compared. As the authors note, the

Pooled LiNGAM method still makes the same assumption that the original

LiNGAM method does, that of homogeneity in both graph structure as well as edge

weights. Pooled LiNGAM showed performance nearly equivalent to other

commonly used Bayes net approaches (Xu et al. 2014).

Finally, latent variable LiNGAM (Hoyer et al. 2008) is a variant of LiNGAM

that accounts for the presence of latent confounding variables. Unobserved variables

can potentially have causal effects on observed variables, and if left unmodeled this

association can be incorrectly expressed as a causal connection between observed

variables. LV-LiNGAM proposes a set of causal structures, where associations

between observed variables can be due to the presence of an unobserved variable.

The algorithm then simplifies this set of causal structures into a canonical model,

which includes, in some sense, a minimum number of latent variables and causal

connections needed to optimally model the observed data. One key feature of this

method is that it allows for non-Gaussian latent variables to take advantage of the

LiNGAM framework.

4.1 Details

Here, we will review the computational aspects of the original LiNGAM algorithm,

as well as mention the contribution of the pairwise LiNGAM.
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Shimizu et al. (2006) begins by proposing that the data generating model for an

observed set of multivariate data X is

X ¼ BXþ � ð2Þ

where � is a set of non-Gaussian error terms, and B is a square matrix that can be

permuted to strict lower triangularity. This is true given the assumption that the data

generating graph is indeed a DAG, with the attendant acyclity. (Shimizu et al. 2006)

then note that if one solves for X, the resulting equation is identical to that of

independent component analysis (Comon 1994):

X ¼ A�: ð3Þ

LiNGAM’s innovation lies in determining the correct order of the independent

components that corresponds to the matrix B that is as close as possible to strict

lower triangularity.

From (Shimizu et al. 2006), their algorithm in brief follows the steps as follows:

1. Mean center the data, X, and apply the ICA algorithm to get an estimate of A�1.

2. Determine the permutation of A�1 that results in a matrix with no zeroes on the

diagonal. Normalize that permuted matrix.

3. Estimate B with I� A�1�, where A�1� is the permuted and normalized matrix

from the previous step.

4. Find the permutation of B that is closest to strict lower triangularity.

Algorithms to find the permutations in steps 2 and 5 are found in Shimizu et al.

(2006).

Pairwise LiNGAM (Hyvärinen et al. 2010) relies on the assumption of non-

normality to determine the direction of the causal relationship between two

variables at a time. Instead of using ICA, however, they instead use a likelihood

ratio test to determine if the relation is X ! Y or Y ! X. As was noted above,

pairwise LiNGAM can only be used to orient edges that are already determined to

be present, necessitating the use of a separate algorithm to determine the overall

graph structure.

4.2 Uses on fMRI data

While there has been a considerable amount of literature discussing the use of the

LiNGAM family of algorithms on fMRI data, there has been considerably less

literature using any of the LiNGAM algorithms on fMRI data. In one article, Liu

et al. (2015) uses the original LiNGAM algorithm to identify connectivity

differences in the default-mode network between individuals with bipolar disorder

and individuals with major depressive disorder, and showed several differences in

connectivity between brain regions.

The LiNGAM family of algorithms is well suited for analyzing fMRI data at an

ROI level for several reasons. One is that the assumption of non-normality is in

many ways less restrictive than the normal assumption when applied to fMRI data.
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The magnitude of an fMRI signal is not normally distributed, but rather follows a

Rice distribution (Wink and Roerdink, 2006). This Rice distribution can approx-

imate a normal distribution under certain circumstances; however, it typically has a

non-negligible amount of skewness. The LiNGAM family of algorithms uses this

non-normality to orient the edges of the causal graph. However, it is important that

the researcher not use a Butterworth filter (as was done in Smith et al. (2011)) as

this can remove the non-normalities of the data. In that paper, LiNGAM could not

recover the majority of the directed paths, with performance being better only at

longer session times of 1–4 h (Smith et al. 2011). This suboptimal performance is

likely due to LiNGAM’s single subject nature (i.e., uses relatively short time series

and no shared information across individuals). However, another contributing factor

was the use of the Btterworth filter which removed the skewness. Using filters that

maintain the skewness greatly improves LiNGAM-type algorithms ability to

recover directionality (Ramsey et al. 2014).

Code for the original LiNGAM and pairwise LiNGAM is available at https://

sites.google.com/site/sshimizu06/lingam.

ParceLiNGAM and pooled LiNGAM are not available on any accessible site.

4.3 Drawbacks and limitations

The primary drawback of the LiNGAM family of algorithms as applied to fMRI

data is the assumption of homogeneity across individuals in both graph structure as

well as edge weights when data are concatenated to arrive at one data set describing

all individuals. While these assumptions of homogeneous functional connectivity

could be correct when one has a sample of fairly homogeneous subjects, with a

more complex sample, the LiNGAM family of algorithms runs the risk of

committing the ecological fallacy, and presenting a connectivity network that

represents no-one in particular in the sample (Molenaar 2004). However, this is not

necessarily a deeply embedded feature of this family of algorithms, and indeed, the

pooled LiNGAM (Xu et al. 2014) moves one step closer in its testing of multiple

aggregate subjects and determining the number of agreed upon edges.

It is also worthwhile to note that the LiNGAM family of algorithms can be

applied to individual data sets without the assumption of homogeneity. This instead

results in a weaker assumption of homogeneity, as it amounts to fitting a LiNGAM

to each subject in isolation. However, since performance in recovery of direction

decreases with the number of timepoints, this does not always provide reliable

models. LiNGAM family methods require a fairly large number of timepoints for

any degree of accuracy, and also are limited to the number of ROIs that they can

handle, both being limitations to using these methods on fMRI data.

5 LOFS

An orientation algorithm that deserves its own section apart from the LiNGAM

category is that of LOFS, or LiNG Orientation, Fixed Structure (Ramsey et al.

2011). LOFS is a LiNGAM-type algorithm most related to the pairwise approach of
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Hyvärinen et al. (2010). What makes it somewhat unique is its development as an

edge orientation post-processor for the IMaGES algorithm (Ramsey et al. 2011). As

discussed above, the IMaGES algorithm has a difficult time correctly orienting the

edges of a graph, but typically is quite successful in determining the undirected

graph structure. The LOFS post-processor is capable of taking that undirected graph

structure and orienting the edges to produce a directed graph.

5.1 Details

The LOFS algorithm, such as the closely related LiNGAM family of algorithms,

relies on the assumption of non-normality of the error terms. Specifically, LOFS

takes advantage of the fact that the distribution of the residuals from the correctly

specified non-Gaussian linear model will be more non-Gaussian than the

distribution of the residuals from a incorrectly specified model (Ramsey et al.

2011).

To use this fact, the LOFS algorithm tests non-normality using the Anderson–

Darling statistic (Anderson and Darling 1952), and to avoid having to test all

possible directed graphs given a particular graph structure, implements a localized

search algorithm to orient edges. Ramsey et al. (2011) proposes 2 search rules,

where Rule 1 iterates through each node in the graph and orients the edges of X’s

neighbors, whereas Rule 2 does the same, but takes into account the local

neighborhood of X and its neighbors. Rule 2 can be applied after an application of

Rule 1, and results in marginally improved recovery of edge orientation (Ramsey

et al. 2011).

In both cases, the LOFS algorithm iterates through each node in a graph and tests

the orientation of the edges by determining which set of oriented edges maximizes

the non-normality of the residuals, in this case measured by the Anderson–Darling

statistic. Furthermore, the LOFS algorithm, as an extension of IMaGES, is designed

to work with multiple data sets, and when orienting edges allows for different edge

weights for each subject data set. This is one of the differences between this

algorithm and the pairwise LiNGAM algorithm of Hyvärinen et al. (2010).

One final feature of the LOFS algorithm is its ability to retain undirected edges. If

an edge cannot be oriented by the LOFS algorithm, it is still returned un-oriented.

This allows the analyst to identify edges that are potentially impacted by Gaussian

noise or latent confounders enough to not uniquely determine the orientation of the

edge.

5.2 Uses on fMRI data

IMaGES with the LOFS post-processor has been used to examine the functional

connectivity of individuals with autism (Hanson et al. 2013), as the functional

connectivity of cocaine smokers (Ray et al. 2015) and the functional connectivity of

bilingual individuals (Boukrina et al. 2014).

In the simulation studies of Ramsey et al. (2011), wherein they replicated the

standard Smith et al. (2011) simulations and evaluated IMaGES–LOFS, the

combined algorithm outperformed GES, and the original IMaGES algorithm by a
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wide margin. Indeed, IMAGES-LOFS had nearly perfect recall and precision in a

number of the simulation conditions, making this algorithm one of the top

performers. However, in using LOFS, there are several aspects to consider.

Like pairwise LiNGAM, LOFS is an edge orientation technique, and requires a

companion algorithm to determine the graph structure. In this case, that algorithm is

readily found in the IMaGES procedure, which is designed to work with ROI-level

fMRI data. This carries all the attendant drawbacks of the IMaGES procedures

noted above.

The LOFS algorithm as part of the IMaGES–LOFS is available from the

TETRAD project (http://www.phil.cmu.edu/tetrad/).

5.3 Drawbacks and limitations

The LOFS algorithm assumes and indeed requires non-normality of the residuals.

This is potentially an issue if the fMRI data are normally distributed; however, as in

the case of the LiNGAM algorithms, this feature is advantageous given that fMRI

data are likely not perfectly normally distributed. That being said, certain

preprocessing steps can force normality on fMRI data sets (Huettel et al. 2014),

and would render LOFS, and other LiNGAM methods unreliable.

6 Dynamic causal modeling

Dynamic Causal modeling, or DCM (Friston et al. 2003), is a method that can be

used to infer a causal structure from fMRI data. It differs from the other discussed

methods in both its complexity and the properties of the resulting graph structure.

As originally developed in Friston et al. (2003), DCM is not a causal search

procedure. Instead, it is a method to estimate non-linear relations between brain

regions that could be impacted by different tasks or stimuli during scan.

Immediately, this distinguishes DCM from other methods discussed thus far. Both

(IMa)GES and the LiNGAM families of methods are linear in structure, meaning

that each causal relation is additive, while DCM allows for the approximation of

bilinear effects. In addition, DCM can be used with task-related fMRI data, and can

explicitly model the effects of task and stimuli on the causal relations between brain

regions. This is different than other methods discussed hitherto, which are made to

be used with resting-state data or data from a block design. Finally, unlike the other

methods discussed here, which use the BOLD signal time series as is, DCM

explicitly attempts to model the underlying neural signal by estimating a

hemodynamic response function (Friston et al. 2003).

DCM was adapted into a causal search method by Friston et al. (2011). This

causal search procedure is unique among the other methods discussed here. Instead

of restricting the graph structure to directed acyclic graphs, Friston et al. (2011)

allows for directed cyclic graphs which can reflect reciprocal relations between

ROIs. Indeed, the causal search procedure outlined in Friston et al. (2011) estimates

all edges to be directed and reciprocal, which the authors claim is a reasonable

assumption based on anatomical observations.
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6.1 Details

Causal search with DCM consists of three components. The first two components,

the hemodynamic response model (relating the neuronal activity to the BOLD

response) and the coupling function (relating the neuoronal activity of regions to

each other) are aspects of the original DCM algorithm, while the final component,

the model search, was developed in Friston et al. (2011).

To start, DCM utilizes the Balloon–Windkessel (Buxton et al. 1998; Mandeville

et al. 1999) model to decompose the observed BOLD signal to neuronal activity.

Briefly, this model uses a system of equations with parameters informed by

biophysiological information regarding brain blood flow. This includes an increase

in blood flow following activity-dependent vasodilatory signal, which in turn

increases the volume and dilutes deoxyhemoglobin (i.e., the BOLD signal). The

exact details of this function are beyond the scope of this review and can be found in

previously published work (Stephan et al. 2007). The coupling function is a

complex system of differential equations that describe how ROIs relate to each other

at very short timescales. Friston et al. (2011) eventually reduces down to the

following:

_x ¼ Axþ x ð4Þ

where x is a vector of the estimated neural signal obtained from the Balloon model,

_x is the first derivative of x, effectively modeling the rate of change in x, A is a

square matrix of parameters that can be thought of as the functional connectivity

matrix, and x is a vector of random errors. If the structure of the functional con-

nectivity matrix is known, then the parameters can be estimated using expectation

maximization (Friston et al. 2003). Notably, this equation is different than that

presented in Friston et al. (2003). There, the authors assume a known causal

structure, and allow for bilinear effects as well as exogenous inputs, making the

equation:

_x ¼ Aþ
X

j

ujBj

 !
xþ Cu ð5Þ

where B is a matrix containing the effects of the inputs u on the relations between xs

and C is a matrix containing constant effects of the exogenous inputs u. The key

difference between the DCM for network search, and the regular DCM is that DCM

for network search uses a set of stochastic differential equations, that as specified in

(Friston et al. 2011), do not contain bilinear terms or exogenous inputs. Friston

et al. (2011) does note that there is a deterministic setup that does use exogenous

inputs for network search in DCM. In essence, the DCM model for network search

describes set of bidirectional causal relations, and provides a means of evaluating

the fit of this causal structure to the fMRI data. The relevant detail is that these

models restrict the edge orientation to be bidirectional, a somewhat unique feature

of DCM.
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When the causal structure is not known, the causal search procedure is used. As

Friston et al. (2011) rightly points out, enumerating over all possible graphs while

fitting the model to each quickly becomes impossible as one increases the number of

ROIs. As such the authors present the following method. Beginning with a full

model MF , they iterate through the matrix A, setting subsets of the A equal to 0.

They then score each model using ln pðyjmiÞ � ln qðAi ¼ 0jMFÞ � ln pðAi ¼ 0jMFÞ,
where qðAi ¼ 0jMFÞ is the marginal conditional density and pðAi ¼ 0jMFÞ is the

prior probability that the subset Ai is 0. This scheme allows for quick scoring of all

possible causal structures. In addition, the assumption that all edges are reciprocal

leads to a reduced number of models to evaluate.

6.2 Uses on fMRI

Dynamic causal modeling is used extensively in fMRI research, and here, we will

focus on applications of DCM with causal search. Since its publication in 2011, the

network search with DCM procedure has seen few uses. One application uses a

network search with DCM to determine the connectivity structure between two

ROIs, the right posterior STS and the left cerebullar Crus 1, as well as the

modulation of these connections by stimuli (Sokolov et al. 2012). Another article

examined the propagation of epileptic seizures, and utilized a network search over a

set of theoretically plausible networks. Finally, and more recently, researchers used

a network search to determine which DCM best described the default-mode network

during resting-state data (Di and Biswal 2014). It should be noted that in all three of

these articles, DCM was evaluated over a set of predefined network structures, and

not in a full causal search.

DCM with network search is in many ways uniquely suited for the analysis of

fMRI data. DCM itself is designed to take into account the BOLD signal response,

and to extract an estimated neural signal. In simulation studies, DCM with network

search successfully recovered network structure with a high degree of accuracy,

though the simulations were done with a generative DCM model (Friston et al.

2011). In addition, DCM is uniquely flexible in its ability to estimate reciprocal

relations as well as model the effect of inputs, such as tasks and stimuli.

DCM with network search is available in the SPM package for MATLAB (http://

www.fil.ion.ucl.ac.uk/spm/software/spm12/).

6.3 Drawbacks and limitations

One of the largest limitations of DCM is its inability to handle large numbers of

ROIs. The causal search procedure outlined in Friston et al. (2011) appears to be

able to iterate through possible causal structures; however, it does not appear that it

can be applied to more than six ROIs at a time. This is consistent with other

applications of DCM in the neuroimaging literature.

In addition to the low numbers of ROIs being handled by DCM, the assumption

of reciprocal relations between ROIs is problematic. While the authors argue that

this is not proposing an instantaneous causality between two ROIs, and indeed, that

the underlying dependency graph is acyclic, the issue here is that there are other
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potential causes of apparent reciprocal relations, such as unobserved mutual causes

or simple measurement error. The forced assumption of reciprocal relations is not as

ideal as an algorithm with the ability to estimate edges as undirected, such as the

IMaGES–LOFS algorithm, particularly at the timescales that fMRI data operates at,

as the interval between timepoints can be several seconds long.

These two limitations, the low number of ROIs and the forced assumption of

reciprocity makes network search with DCM, in our view, less suitable for causal

search than other algorithms in this review. However, the flexibility and

sophistication of the DCM approach make it an excellent choice for confirmatory

research, and one potential option would be to use DCM estimation on a causal

structure that has been discovered by a different algorithm.

7 PC algorithm

7.1 Overview

The Peter Spirtes and Clark Glymour algorithm (PC algorithm; Spirtes and Glymour

1991) was introduced in the early 1990s. It has been used on a variety of time series

data, such as those seen in studies of economics (Hoover 2008), which made the

transition into functional MRI data rather seamless. The PC algorithm performs in

two stages. First, it identifies the presence of an edge. Next, it identifies the direction

of the edge (Meek 1995). In some cases, the algorithm may be unable to determine

the direction of an edge, and so simply outputs an undirected edge much like

IMaGES.

7.2 Details

The algorithm begins with all connections possible being in the model. It then

removes edges if two nodes are independent or conditionally independent. The tests

for independence condition on all the possible combinations of nodes, starting with

zero nodes, then two, and so on until either all possible combinations are exhausted

or the nodes being tested are found to be conditionally independent. Corrections for

multiple testing may be applied to these series of comparisons, to appropriately

adjust the false positive rate.

The direction of the edge is considered once the undirected edges are identified.

This may be done in many ways (Meek 1995), most of which consider the set of

nodes that caused the conditional independence decisions as well as the common

neighbors shared by two given nodes (Mumford and Ramsey 2014). For instance, if

two conditionally independent variables, X and Z are found to be conditionally

dependent when conditioned on a third variable Y (that was not in the set used to

identify conditional independence), then Y would be a collider. From this, we know

the following: X � Y � Z. The PC algorithm would then identify that the edges

originate from the conditionally dependent nodes X and Z and end at the collider:

X ! Y  Z. In some cases, after considering colliders, the directionality of other
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edges becomes apparent. In this way, directionality may be assessed (Spirtes et al.

1993).

7.2.1 Use on fMRI data

Much like GES, the PC algorithm does not inherently include effects regarding

temporal dependencies and can be used on either structural or functional MRI data.

The PC algorithm has been used on structural data across multiple participants to

investigate cortical connectivity (Joshi et al. 2010). That paper used the PC

algorithm to arrive at the presence of edges and then used structural equation

modeling (SEM) to estimate the weight of these effects.

For fMRI data, the PC algorithm is usually considered at contemporaneous

timepoints. This choice is informed by the findings from Smith et al. (Smith et al.

2011), which found that lagged approaches failed to arrive at the presence and

direction of effects used to generate the data. If desired, dynamics can be considered

by including a lagged set of variables (Mumford and Ramsey 2014), but the

algorithm does not prevent backwards directionality. In this case, backwards

directionality should be excluded a priori by background knowledge input into the

algorithm by the user. Alternatively, the residuals obtained from a VAR model can

be considered as a series of data with its temporal dependencies (i.e., dynamics)

removed (Swanson and Granger 1997) and these residuals can then be used in PC

analysis.

Studies using both structural and functional MRI data have found that results

from PC algorithm run on fMRI data corresponds with inferences obtained from

structural data (Dawson et al. 2013; Iyer et al. 2013). As noted above in the GES

section, one empirical investigation using fMRI found consistency between subjects

in patterns of edges obtained from GES and PC (Sun et al. 2012). Thus, the use of

PC for fMRI data to determine the presence of edges has been promising, at least for

arriving at the presence of an edge between nodes.

A number of extensions make the algorithm even more attractive to fMRI

researchers. In particular, approaches have been developed to control for false

discovery rate (Li and Wang 2009; Liu et al. 2012; Strobl et al. 2016) and detection

of change points, or shifts in the brain process (Lian et al. 2014). These

developments have been motivated specifically by issues seen in fMRI data and

have largely been validated using designs commonly seen in this literature.

The PC algorithm is available from the Tetrad project: http://www.phil.cmu.edu/

tetrad/current.html.

7.2.2 Drawbacks and limitations

Results from the Smith simulations indicated that, at the individual level, the PC

algorithm can reliably detect the presence of an edge but not the direction (Smith

et al. 2011). This is an important finding, since directionality of edges is often of

interest in fMRI studies. However, if the data are aggregated across individuals,

reliable networks may be obtained on this data (Iyer et al. 2013). This requires the

assumption of homogeneity across individuals in terms of their brain processes, an
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assumption that may not always be met (Finn et al. 2015; Smith et al. 2012). These

undirected networks could then be used as the input for edge orientation algorithms,

such as LOFs or pairwise LiNGAM.

8 Granger causality analysis

8.1 Overview

Granger causality builds models from within a vector autoregression (VAR)

framework to arrive at lagged and/or contemporaneous relations, depending on the

search space provided by the researcher. Originally introduced within the economics

community, Granger causality has been used on fMRI data for some time. Typically

for brain studies into brain sciences, only lagged relations are explored, with

exceptions existing (see description of GIMME below). Since temporal information

is needed, this approach requires data that are in the form of time series. As such it

has been used solely for functional MRI.

Granger causality identifies edges to add after considering the autoregressive

influence for each region (Granger 1969). In this way, directed edges between brain

regions are retained only if a given region predicts subsequent values for a target

region after controlling for the target region’s ability to predict subsequent values in

itself using the values at a prior timepoint. A brain region is said to ‘‘Granger cause’’

another region if these conditions are met.

8.2 Details

Granger causality can be defined in terms of VAR models, which can be defined as

follows for up to a lag of L:

yt ¼ tþ
XL

l¼1

ðUt�l þ Ug
t�lÞyt�l þ ft ð6Þ

where t is intercept, y is a vector of observed multivariate time series data at a given

time t, and f is the residual vector for each point in time t. U matrices are the p � p

matrices of directed edges and edge weights for p variables. The diagonal at a lag of

zero (i.e., contemporaneous effects) must be zero, whereas the diagonals of lagged

U matrices represent the AR effects. Granger causality begins by estimating the AR

effects for all variables. These weights indicate the degree to which a given variable

can be predicted by itself using previous timepoints. After accounting for these

effects, one can identify if a variable Granger causes another variable by looking at

the significance levels of the off-diagonal elements of the U matrices.

Granger causality can be additionally defined on the frequency domain of a

signal (Kamiński et al. 2001), which can be useful in examining neurological

phenomena. This type of Granger causality is related to the notion of signal

coherence (or in the multivariate case, multiple coherence) (Chicharro 2011), which

broadly speaking, is a measure of the similarity of a signal to another signal within
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the frequency domain. Coherence is somewhat analogous to a correlation in the time

domain. Chicharro (2011) details how Granger causality in the spectral domain is an

alternative method to the VAR framework detailed above for testing the notion of

Granger causality between variables, particularly when a multivariate time series

might not follow a VAR-type model.

Finally, as an aside, there is a even more general form of Granger causality

termed information-theoretic Granger causality (Schreiber 2000; Lungarella et al.

2007). This form of Granger causality defines causation in terms of mutual

information, a quantity that reflects non-linear dependencies between random

variables. The advantages of this approach lie in its generality, and allow for non-

linear causal effects to be detected. In addition, the information-theoretic definition

of Granger causality has direct relations with both the VAR definition and the

frequency-domain definition, but has theoretical advantages as the information-

theoretic definition is based on conditional probabilities, which are somewhat more

directly interpretable in causal inference.

8.2.1 Use on fMRI data

The form of Granger causality introduced to the fMRI literature (Roebroeck et al.

2005; Goebel et al. 2003) relies heavily on an approach developed by Geweke

(Geweke 1982). Here, temporal precedence is required to identify the direction of

edges. Linear dependence between two given brain regions (or voxels), Fxres;yres
, is

arrived at as follows:

Fxres;yres
¼ Fxres!yres

þ Fyres!xres
þ Fxres�yres

: ð7Þ

The variables xres and yres are the residuals of the original x and y variables after

regressing out the AR effects (Goebel et al. 2003). Fxres!yres
and Fyres!xres

are mea-

sures of the directed linear influence of xres predicting yres and yres predicting xres,

respectively. The contemporaneous effects (contained in Fxres�yres
are bidirectional.

Total independence of two given variables (be it ROIs or voxels) in this iteration

can be obtained by assessing that (1) there is no directed lagged relation among the

variables and (2) that there is no undirected contemporaneous relation between

variables. If it is seen that the two variables are not independent, the approach

identifies if one variable causes the other. Note that they may both Granger cause

each other.

Granger causality has been conducted on fMRI data at the ROI level, the voxel

level, and hybrid versions of this (as done in Roebroeck et al. 2005). Indeed, it is

one of the more highly used approaches for arriving at directed connectivity models.

For instance, it has been used in fMRI studies of depression (Hamilton et al. 2011),

treatment for ADHD (Peterson et al. 2009), hepatic encepholopathy (Qi et al. 2013),

and nicotine addiction (Ding and Lee 2013).

Several toolboxes are available on NITRC for Granger causality specifically

for fMRI applications, including: GCCA, which uses a spectral version of

Granger causality (Seth 2010), REST-GCA (Zang et al. 2012), and BSMART
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(Cui et al. 2008). An extension of the linear approach enables the use of non-

linear effects (Marinazzo et al. 2011).

8.2.2 Drawbacks and limitations

Granger causality using only lagged (i.e., no contemporaneous directed effects) has

been shown to be unable to detect the true direction of edges in data simulated to

emulate fMRI data at the individual level (Smith et al. 2011). It is unclear the

degree to which models can be recovered if data are considered in group-level

design. In practice, this analytic approach has typically been conducted on data,

where each individual’s data have been concatenated to each other individual. This

requires that the same causal model for brain activity exists for all individuals, an

assumption that likely is not met. From a statistical standpoint, this heterogeneity

across individuals will likely cause spurious findings if time series are assumed to be

homogeneous in terms of the relations among variables but indeed are not

(Molenaar 2004).

Granger causality, as commonly implemented in fMRI research, also does not

include directed contemporaneous paths. However, when the temporal resolution of

data collection is low relative to the process being studied, edges may appear

contemporaneously (Granger 1988, 1969). This describes exactly what exists in the

collection of fMRI data. Indeed, evaluations using benchmark fMRI data

simulations (Smith et al. 2011) reveal that approaches that consider contempora-

neous effects are the best at returning the generating data structure of directed

functional connectivity (Smith et al. 2011; Ramsey et al. 2014; Gates and Molenaar

2012; Mumford and Ramsey 2014). For this reason and others, the utility of Granger

causality with VAR for fMRI connectivity mapping has been under much debate in

recent literature (e.g., Wen et al. 2013; Deshpande and Hu 2012). In addition,

Granger Causality approaches would be unable to distinguish associations between

variables that were due to latent confounders vs. true causal connections.

With those criticisms being voiced, it is worthwhile to note that the LiNGAM

family of algorithms can be viewed as an extended version of Granger causality

(Hyvärinen et al. 2010) that includes both lagged and instantaneous causal paths. As

was discussed above, LiNGAM achieves this using non-normalities within the data

to inform the directionality of instantaneous causation. Alternatively, Schiatti et al.

(2015) provide a VAR-based extended Granger causality framework that uses the

pairwise LiNGAM procedure (Hyvarinen and Smith 2013) to orient contempora-

neous causal connections, after candidate contemporaneous associations are

identified by a lag-1 VAR model.

9 FCI and GFCI

9.1 Overview

Fast causal inference (FCI; Spirtes et al. 1993, 1995) and greedy fast causal

inference (GFCI; Ogarrio et al. 2016) are causal search procedures that account for
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the effect of unobserved, or latent, confounders as well as the presence of selection

bias. These methods are search procedures that attempt to construct a more general

partially directed acyclic graph that represents a class of equivalent conditional

independence structures, and from this general structure, finds the directed paths

that are present in every member of the equivalence class. These paths are the

necessary causal paths for the overarching causal structure. Latent variables and

selection variables are accounted for by including hypothetical latent variables and

selection variables in the independence structure. This family of methods bears a

resemblance to the GES and IMaGES algorithms, as all these techniques search

over equivalence classes, or partially directed graphs that represent a set of

statistically indistinguishable directed graphs.

9.2 Details

Both the FCI and GFCI attempt to find the partially directed graph that represents

the most likely equivalence class of directed causal graphs. These methods differ

from the previous algorithms in that they include the possible presence of latent

variables, as well as selection bias within the equivalence class. By including the

presence of these sources of endogeneity, the FCI and GFCI algorithms return three

distinct types of edges:

• Directed edges Edges that can only be due to a directed connection. One can

consider these edges as potential causal effects.

• Bidirectional edges These edges represent the potential for a latent variable

being the dual cause of the two target variables. This type of edge represents

evidence for some sort of association between the variables, likely due to an

unobserved variable.

• Induced edges These edges are ambiguous in their direction, in that it is unlikely

that they are true bidirectional effects, but there is not enough information to

uniquely determine the direction of the connection.

In the large sample limit, i.e., as the number of observed datapoints approaches

infinity, the FCI and by extension the GFCI methods have been proven to return the

true causal structure (Spirtes et al. 1995; Ogarrio et al. 2016). However, this

crucially relies on several assumptions regarding causal structures, as well as the

assumption of independent identically distributed random variables. The GFCI is a

recent innovation of the FCI that performs better at small sample sizes.

9.3 Use on fMRI data

To our knowledge, FCI nor GFCI has ever been applied to fMRI data. There is one

significant advantage to using these methods with fMRI data, and that is in the

accounting for of latent confounders. Typically, causal search procedures are

performed not on the whole brain, but rather a subset of ROIs. This immediately

raises the question of unmodeled ROIs accounting for the association between two
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modeled ROIs. The use of FCI or GFCI could potentially reduce the impact of

unmodeled ROIs.

9.3.1 Limitations and drawbacks

The key limitation to FCI or GFCI as applied to fMRI data is the need for

independent identically distributed random variables. fMRI signal is almost by

definition neither independent between timepoints, nor identically distributed. Due

to this, the FCI and GFCI are not guaranteed to return the true causal structure as the

number of timepoints gets large. This appears to be a fatal flaw in the application of

FCI and GFCI to fMRI data, as well as a potentially fruitful line of research, as the

ability to account for latent confounders would be extremely useful in the fMRI

context.

10 GIMME

10.1 Overview

Group iterative multiple model estimation (GIMME; Gates and Molenaar 2012) is a

model-building approach from within a structural equation modeling framework. It

is similar to IMaGES in that shared information is used to arrive at a directed

connectivity model for all individuals, with the edges in the model estimated

separately for each individual. In addition, each individual is considered separately

without concatenation. A final similarity is that they both were motivated by

problems seen with arriving at data-driven models on fMRI data. A notable differ-

ence is that GIMME allows for individual-level edges to exist, whereas IMaGES

requires all individuals to have the same pattern of edges. In this way, GIMME

attends to heterogeneity in brain processes that is likely to exist in many samples

(Finn et al. 2015; Laumann et al. 2015; Gates et al. 2014).

10.2 Details

GIMME works from within a unified SEM framework (Kim et al. 2007), which is

related to structural VAR, another approach used in fMRI (Chen et al. 2011). The

uSEM contains both contemporaneous and lagged effects to conduct VAR analysis

using SEM. In this way, GIMME does not require the researcher to choose one or

the other temporal scale–both are used as needed. This can prevent the presence of

spurious effects if both contemporaneous and lagged edges exist in the true model

yet only one is modeled (Gates et al. 2010).

Much like the GES algorithms, GIMME is a score-based, feed-forward algorithm

that also conducts backward pruning search. GIMME works from within a Granger

causality framework described above. However, it adheres to the original definition

by allowing for directed contemporaneous edges (Granger 1969, 1988). Beginning

with an empty graph (i.e., no edges), GIMME iteratively selects which directed edge

(either lagged or contemporaneous) would improve the greatest number of
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individuals’ models. This is done in a feed-forward approach based on modification

indices (Sörbom 1989) until no edge would significantly improve the majority of

individuals’ models. Next, the model is pruned to ensure that all edges in the current

group-level model is significant for the majority of individuals. Next, GIMME uses

the group-level edges as a prior and searches for edges that may be needed at the

individual to arrive at a model that fits excellently for that individual. Both the

group- and individual-level edge weights are estimated uniquely for each individual.

GIMME does not require that each individual has the same number of timepoints.

The final models obtained from GIMME for up to a lag of L can be defined as

follows:

gt ¼ ðAi þ A
g
i Þgi;t þ

XL

l¼1

ðUi;t�l þ Ug
i;t�lÞgi;t�l þ fi;t ð8Þ

where A is the p � p matrix of contemporaneous effects for p variables and contains

a zero diagonal. U is the matrix of lagged effects with AR effects along the diag-

onal, g is the manifest time series (either for a group or individual in this general

formula), and f is the residual for each point in time t. The subscript i indicates

individual-level estimates and superscript g denotes group-level patterns of effects.

Note that all effects error variances are estimated at the individual level with no

constraints regarding the distribution of parameters.

10.2.1 Use on MRI data

Much like VAR and Granger causality, GIMME utilizes temporal information.

Hence, it can be used for fMRI data but not DTI or other data that focus solely on

static information. GIMME is best used on ROI-level data, because it cannot

currently handle the computational demands required for large scale, voxel-level

matrices. Like IMaGES, GIMME has been shown to be robust to a number of

conditions likely seen in fMRI data (see Smith et al. 2011). As a further benefit,

GIMME can reliably recover effects when data are either normally distributed or

have a skewed distribution, whereas other approaches require filtering techniques

that do not normalize the data (Ramsey et al. 2014). In this way, GIMME is robust

to certain preprocessing choices made by the researcher, since it can be used with or

without Butterworth and low-pass filters.

GIMME has been used in clinical samples ranging from children with attention-

deficit/hyperactivity disorder (Gates et al. 2014) to traumatic brain injured (Hillary

et al. 2014), nicotine-addicted (Nichols et al. 2014; Zelle et al. 2016), and clinically

depressed (Price et al. 2016) adults. There have been several recent uses of the

GIMME on non-clinical samples, such as the study of language acquisition (Yang

et al. 2015), alcohol use in college-aged students (Beltz et al. 2013; Beltz and

Molenaar 2015) and olfactory processes (Karunanayaka et al. 2015). Even in

normative samples, all these applications have found differences in the pattern of

effects across individuals. This further highlights the need for approaches that can

accommodate individual-level differences in the presence and direction of edges.
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Extensions to GIMME have further improved its utility for fMRI researchers.

These include: subgrouping individuals based on similar brain processes (Gates

et al. 0000); enabling multiple patterns of edge results (Beltz and Molenaar 2016);

modeling task effects convolved with the hemodynamic response function (Gates

et al. 2011); and a posteriori model validation (Beltz and Molenaar 2015).

GIMME is available from as an R package on CRAN gimme and on NITRC as a

Matlab toolbox (https://www.nitrc.org/projects/gimme/) that depends on LISREL

software. Instructions and additional resources can be found here: http://gimme.

web.unc.edu/.

10.2.2 Drawbacks and limitations

A drawback of GIMME is that it cannot handle the number of nodes that some other

methods can as it has an upper limit of about 25. In addition, it currently only

models linear relations among effects. Finally, the estimation of effects may be

biased, since the likelihood function to which the uSEM is fit assumes independence

of the rows of observations, an assumption that is violated here due to the temporal

nature of the data.

11 MDM–IPA

Multiregression dynamic models with integer programming algorithm (Costa et al.

2015) is a recently developed method for determining causal structure in fMRI data.

Fundamentally, this algorithm is a combination of a dynamic model, found in the

multiregression dynamic model component, and a causal search procedure, found in

the integer programming algorithm. The MDM component models an observed

fMRI timeseries as a dynamic system, where the relations between regions can vary

over time. The IPA component searches over all possible causal structures using a

score function that radically reduces the computation time for the search.

11.1 Details

MDM–IPA is a ROI-level technique that is applied to individual data sets, and does

not currently have the capability of integrating multiple subjects data without

assuming that the same data generating model applies to all subjects.

The MDM component of MDM–IPA consists of two equations, that of

observation equations, of which there are as many as there are ROIs, which maps

the relation between ROI time series as such (Costa et al. 2015):

YtðrÞ ¼ FtðrÞ0htðrÞ þ �tðrÞ ð9Þ

where YtðrÞ is the value the rth ROI at timepoint t, FtðrÞ is the data at the tth

timepoint for the parent ROIs, or the ROIs that causally predict the rth ROI, htðrÞ is

the vector of time-varying parameters governing the relation between the ROIs, and

�tðrÞ is a normally distributed error term with ROI specific variance.
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The second component of the MDM is the system equation that determines the

time-varying nature of the parameter set:

ht ¼ Gtht�1 þ wt ð10Þ

where Gt is a block diagonal matrix, where each block corresponds to the relations

between parameters governing one particular ROI, and wt is a normally distributed

error term with 0 mean, and a block diagonal covariance matrix. Finally, one must

specify the initial conditions, and as this is a Bayesian method, one can do this using

priors. The details of these priors are beyond the scope of this review, but can be

found in Costa et al. (2015).

The setup of the MDM allows for the calculation of a model score, in this case a

joint log predictive likelihood. Furthermore, in the case of MDM–IPA, the model

score is a sum of the individual log predictive likelihoods for each ROI’s equation.

This makes evaluating which causal structure best fits the data a simpler and quicker

proposition than a more complex model would allow.

The MDM component of the MDM–IPA differs from other approaches described

here due to its dynamic parameters. This allows for substantial heterogeneity in the

temporal dynamics of the fMRI signal; however, this does raise the specter of

overfitting.

To determine the predictors of each ROI, Costa et al. (2015) use an integer

programming technique. Effectively, integer programming attempts to directly

solve the model selection process, rather than searching through all possible models.

In their application, Costa et al. (2015) uses integer programming to attempt to find

the optimally fitting causal structure, and if a direct application of integer

programming does not yield a specific solution, they resort to a search procedure

beginning from the best solution from the integer programming. This process

drastically reduces the amount of time needed to find the optimally fitting causal

structure.

11.2 Uses on fMRI

As this is an extremely recent method, there have been no uses of MDM–IPA in a

substantive fMRI study, so we will restrict our discussion to the advantages of this

method over the others discussed here. Costa et al. (2015) evaluated the

performance of MDM–IPA on the canonical Smith et al. (2011) simulation data

from a single condition which had 5 ROIs. Costa et al. (2015) showed that MDM–

IPA performed well, with specificity and sensitively above 75%, and a detection of

the correct orientation of an edge at 63%. These values are better than, for example,

the GES and PC algorithm, though they do not outperform IMaGES–LOFS or

GIMME. When Costa et al. (2015) simulated data that had time-varying connection

strengths, MDM–IPA significantly outperformed both GES and PC, both of which

are incapable of modeling dynamic functional connectivity.

This result highlights the unique contribution of MDM–IPA, that of its ability to

model dynamic functional connectivity. There is currently no other causal search

method that allows for time-varying relations between ROIs, and this development
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is extremely timely given the current interest in dynamic functional connectivity

(Hutchison et al. 2013). In addition, the integer programming approach to causal

search is a novel contribution to the causal search literature, and could be applied to

other algorithm’s search procedures. While these are two major advantages to

MDM–IPA, there are several drawbacks and limitations that should be discussed.

11.2.1 Drawbacks and limitations

One of the key limitations of this method is the computation time. Costa et al.

(2015) indicate that for 11 ROIs and 100 timepoints, the time to determine the best

fitting causal structure is approximately 168 min, and this is for a single subjects

data set. This large amount of time is likely due to the dynamic nature of the MDM

component, as the authors mention that once the necessary scores are computed,

determining the best causal structure with IPA takes around 30 s. This lengthy

computation time renders the MDM–IPA less usable for larger numbers of ROIs.

In addition, the dynamic nature of the MDM component, while innovative, runs

the risk of overfitting to noise, and care should be taken when interpreting the results

of the time-varying parameters. Finally, MDM–IPA is a single subject method, and

does not allow for the incorporation of more than one subjects data set so as to infer

a group causal structure. This reduces the usability of MDM–IPA to single subject

analyses.

12 Summary

The causal search procedure for fMRI data literature is growing at an increasing

rate, with new algorithms and constant improvements being published all the time.

In our review, we have endeavored to present a mix of historical, but still widely

used methods along side of more recent and more accurate methods. We have

summarized many relevant details of the presented methods in Table 1.

There are several overall points to make regarding causal search applied to fMRI.

The two methods that appear to perform best with regards to accuracy and

specificity, the IMAGES-LOFS algorithm (Ramsey et al. 2011) and the GIMME

algorithm (Gates et al. 2010) achieve their gains in performance in two very

different ways. The IMAGES-LOFS algorithm takes inspiration from the LiNGAM

family of algorithms and uses the assumption of non-normality to orient edges with

a high degree of accuracy, while the GIMME algorithm uses lagged information to

orient the causal relations. Both these approaches have advantages and disadvan-

tages. The assumption of non-normality might not be met within a data set, or the

data set might have normality forced upon it by preprocessing. The use of lagged

information might not accurately reflect the causal relations due to the interval

between each timepoint, which might be in the realm of 2–5 s. However, it is

somewhat comforting to see that both of the algorithms have similar performance on

the same simulated data sets of Smith et al. (2011).

The next point is that these methods (with the notable exception of GES) can

only be used on ROI-level data. This is both for computational reasons, in that if
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used on several thousand voxels the majority of these methods would take several

decades to complete estimation, and for theoretical reasons, in that the signal from a

single voxel has a considerable amount of noise in it. The use of ROI-level data

allows for an aggregation over the noise of individual voxels, which should result in

a more robust set of causal estimates. These methods do differ in how many ROIs

they can handle, with the greatest number of ROIs going to the IMAGES-LOFS

algorithm. An analyst should in part select a causal search procedure based on how

many ROIs they are interested in. The exception to this is found in GES, where

recent developments have shown that the algorithm can scale to over a million

variables (Ramsey 2015). However, in an fMRI context, overfitting and voxel-level

noise are still a primary concern.

It is worthwhile to note that very few algorithms presented here account for latent

confounders, with the exceptions being FCI, GFCI, and LV-LiNGAM. The presence

of latent variables within the data generating causal structure can have significant

impacts on the detected causal structure, typically resulting in spurious edges or

incorrect orientations. While a moderate amount of attention has been paid to latent

variables in the causal search literature, very little attention has been paid to latent

confounders in the fMRI literature. In future work, latent confounders, such as

structurally important ROIs that are left unmodeled (take, for example, ROIs from

the default-mode network, which have wide ranging effects on other networks),

need to be carefully considered.

A final point is about the heterogeneity that each method allows. Many of the

methods discussed here are used only on a single subjects data set, and require

separate estimations on each individual collected. However, two methods in

Table 1 Summary of reviewed methods

Method Non-normality

required

Cyclical

relations

Lagged

info

Instant

causality

Requires

graph

# of ROIs

PC No No No Yes No 5–15

GES No No No Yes No 5–15

([1000 K)

FCI/GFCI No No No Yes No 5–15

Granger No Yes Yes No No 5–15

GIMME No Yes Yes Yes No 5–20

LiNGAM Yes No No Yes No 5–15

ParceLiNGAM Yes No No Yes No 5–15

Pooled

LiNGAM

Yes No No Yes No 5–15

Pairwise

LiNGAM

Yes No No Yes Yes NA

IMaGES No No Yes Yes No 5–20

LOFS Yes Yes NA Yes Yes NA

Network search

DCM

No All edges Yes Yes No 4–6
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particular, that of IMaGES–LOFS and GIMME allow for information to be

combined across subjects. IMaGES–LOFS estimates a single causal structure for

every individual, but allows the weights on each edge to differ (Ramsey et al. 2011).

GIMME estimates group, subgroup, and individual-level causal structures, and also

allows each weight to differ between individuals. These distinctions between

allowed differences can be important when considering the population under study.

In a more heterogeneous population, such as one that has a clinical disorder, it might

be best to allow for more heterogeneity, and, therefore, use GIMME. If the

population under study are typically developing adults, and one can assume that the

causal structure should be approximately the same for each individual, then

IMaGES–LOFS would be a better choice. Suffice it to say, it is not enough to

choose a causal search procedure solely on the basis of performance, but one also

must consider what differences in causal structures are allowed by each algorithm.

Causal search algorithms are a valuable tool for a neuroimaging researcher, one

that allows them to uncover hidden structure and better understand the system-wide

functioning of the brain. These methods are in their infancy, with continuous

development, and the coming years will bring great advances.
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