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Assessing Dynamic Psychological Processes

Observing dynamic interactions among individuals has 
long been a practice for professionals working with fami-
lies, couples, and in other settings where social processes 
are of interest. The possibility of quantifying aspects of 
dyadic interactions that may be of clinical interest con-
tinues to grow given the increase in ability to gather 
numerous observations across time for individuals. For 
instance, emerging methods can empirically identify the 
influence that one partner in a marriage exerts on the 
other’s mood, or the coherence between a client’s and a 
patient’s recordings of heart rate. Sometimes referred to 
as “intensive longitudinal data,” examples include data 
from daily diary questionnaires, ecological momentary 
assessments, and observational data. For generalizability 
to other types of data that may be used, such as psycho-
physiological data, we will refer to these data as “time 
series data” here. The present article provides an over-
view of statistical techniques for quantifying dyadic data 
from within a dynamic system framework. Please note 
that these methods can also be used on any multivariate 
time series data. The present article is pedagogical in 
nature, focusing only on approaches that are readily 
available.

Dynamic systems approaches provide the ideal math-
ematical tools for analyzing dyadic interactions. Broadly, 
a dynamic system is one that changes over time, with its 

current state dependent on its previous states (Alligood, 
Sauer, & Yorke, 1996; Chow, Ferrer, & Nesselroade, 
2007). An important benefit of studying dynamic interac-
tions is the ability to examine how two individuals relate 
across time. Traditionally, researchers might collect data 
across time for a given individual and then average that 
individual’s data. From this, researchers can look at the 
sample from a cross-sectional standpoint. This differs 
from the time series approaches to be outlined here. Prior 
work has demonstrated that features of the data aside 
from the average, such as the degree to which a person’s 
mood is stable across days (Castro-Schilo & Ferrer, 
2013), can reveal new insights. Similarly, the degree to 
which two individuals covary across time can elucidate 
the processes defining their interaction. The present arti-
cle provides a guide for choosing a method that best 
matches the research question regarding dyadic 
interactions.
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Abstract
Individuals in both clinical and research settings increasingly provide data across numerous time points. Examples 
include measurements collected from wearable technology (e.g., accelerometers), psychophysiological measures, coded 
observations, social media behaviors, and daily diary data. When numerous observations are available for each individual, 
the data fall under the class of time series data and can be examined from within a dynamic systems perspective. We provide 
a broad overview of current analytic methods for quantifying relations among dyads using this data type. The techniques 
include those from within a linear modeling framework, approaches that include a measurement model, and methods for 
examining cyclical relations. We also discuss some special topics, such as methods that allow for models to shift across 
time and that accommodate heterogeneity across individuals. Finally, methods that account for similar shapes of nonlinear 
curves across time are described. From this breadth of options, we hope to help guide practitioners, clinicians, and 
researchers in choosing the optimal method for their data and line of questions. To further aid in this choice, we indicate 
programs available for each technique. Example dyads presented here range from mother–infant, patient–caretaker, and 
husband–wife; however, the analytic methods can be applied to any type of dyad.
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Table 1.  Methods for dyad-level modeling.

Method Research questions answered Recommendations and limitations Implementation

Cross-corr. Do the actors covary at a lag and/or 
contemporaneously?

Does not include third variable 
arguments or measurement 
error. Excellent for continuous 
data.

Standard statistics software

VAR Do the actors covary across time, 
controlling for other variables?

Does not include measurement 
error. Excellent for continuous 
data.

Standard statistics software

SSM Do the actors covary on a latent construct, 
controlling for other variables?

Excellent for continuous data. SsfPack, (Koopman, Shephard, & 
Doornik, 1999)

uSEM Do the actors covary at a lag and/or 
contemporaneously, controlling for other 
variables?

Estimates of weights are more 
biased than SSM estimation 
approaches. Excellent for 
continuous data.

R packages: vars (Pfaff, 2008); 
gimme (Lane, Gates, & 
Molenaar, 2015)

HMM What describes the states the actors 
mutually share? How does this dyad move 
in and out of these states?

Only allows for one time lag. 
Excellent for categorical data.

R package: depmix (Visser, 2014)

GridWare Is the dyad rigid or flexible in their shared 
behavior states? How long are they in 
each state?

Provides descriptive measures 
necessitating further analysis. 
Excellent for categorical data.

GridWare (Lamey, Hollenstein, 
Lewis, & Granic, 2004)

RQA Is the dyad rigid or flexible in their shared 
behavior states? How long are they in 
each state?

Provides descriptive measures 
necessitating further analysis. 
Excellent for categorical data.

R package: CRQA (Coco & Dale, 
2014)

Diff. eq. Is change in one actor predicted by the 
other actor at a previous time, controlling 
for other variables?

Does not take into account 
contemporaneous effects. 
Excellent for categorical data.

SAS proc model

Freq. domain Do the actors share similar cyclical 
patterns? Does one actor’s cycle onset 
precede the other actor’s?

Difficulties in interpretation. 
Excellent for continuous data.

Standard statistics software

Note. Cross-corr. = cross-correlation; VAR = vector autoregression; SSM = state–space modeling; uSEM = unified structural equation modeling; HMM 
= hidden Markov modeling; RQA = recurrence quantification analysis; Diff. eq. = differential equations; Freq. domain = frequency domain analysis.

Methods

Most modeling approaches described below share a few 
properties unless otherwise specified. The first is that the 
methods require that the assumption of weak stationarity for 
the data be met. For time series data to have weak stationar-
ity, its mean, variance, and covariance must remain constant 
across time (Shumway & Stoffer, 2006). That is, the features 
of the dyad’s time series must be relatively consistent across 
time, with no jumps or shifts. Second, most approaches 
require continuous or scaled data as opposed to categorical 
data. Third, in terms of organizing the data, all the data ana-
lytic techniques described below require that the data be in 
long form. This means that there are T rows of data and p 
columns of variables, where T is the length of time (or obser-
vations) and p is the total number of variables to be used in 
analysis. For adequate power, the same suggestions used for 
many types of general linear models are followed.

Despite some similarities in the requirements, the meth-
ods vary greatly in terms of the features offered, questions 
they can attend to, how they have been used, and the ease 
with which it can be used by clinicians and researchers. 

Additionally, some methods have different assumptions 
regarding the data. These points are described in full for 
each method. We organize models in terms of dyad-level 
models, or those that are conducted for each dyad (summa-
rized in Table 1), and group-level models, or those that in 
some way use information across the sample of dyads 
(Table 2). Please note that for consistency in describing the 
methods, we refer to the dyad in terms of a husband–wife 
unit; however, the methods can be used for any dyad.

Dyad-Level Methods

Cross-Correlation–Based Methods.  Averaging values across 
time can be informative, but additional information may be 
reaped from these data. In particular it may be of interest to 
see how two individuals covary across time, or the extent to 
which variation in one individual relates to variation in another 
individual (see Figure 1A). The ideal data for this type of 
analysis are similar to data typically desired for any correla-
tional analysis: continuous, normally distributed data. The dif-
ference here is that the temporal ordering is considered.
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The first examinations into dyadic interactions from a 
correlation-based perspective used standardized scores to 
arrive at a measure of synchrony between husbands and 
wives (Allison & Liker, 1982; Levenson & Gottman, 1983). 
Termed reciprocity scores, they indicated the extent to 
which a husband’s value on one variable predicted his 
wife’s value at the next time point and vice versa. A more 
general approach considers cross-correlation directly 
(Shumway & Stoffer, 2006). Here, the relationships at a lag 
of 1 between two given individuals h and w in a dyad i can 
be expressed as follows:

r
y y y y

T s
hw i

h t i h i w t i w i

yw h i

,
, , , , , ,

, ,

,= ∑ − − −( )
− ( )

( )1

1 	
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where rhw i,  is the correlation between the husband’s scores 
at a previous time period ( yh t i, ,−1 ) with the corresponding 
wife’s scores ( , ,yw t i ) at the next time period (i.e., “wife reci-
procity”). Similarly, rwh i,  would be considered “husband 
reciprocity,” an estimate of the relation between the wife’s 
scores at a lag and the husband’s subsequent scores. syw h i, ,  
represents the pooled standard deviation for husbands and 
wives.

These methods have predominantly been used in studies 
examining how psychophysiological linkage in dyads relates 
to qualities of marital relationships. For instance, researchers 
using the reciprocity scores (Levenson & Gottman, 1983) 
and cross-correlation (Gates, Gatzke-Kopp, Sandsten, & 
Blandon, 2015) approaches have found that marital dyads 
with high correspondence in their psychophysiological 

measures across time (e.g., respiratory sinus arrhythmia, 
heart rate) tend to have greater levels of conflict and marital 
dissatisfaction.

Recommendations and limitations.  While traditionally con-
ducted on psychophysiological measures, correlation-based 
approaches can be used on any data for which there are an 
appropriate number of paired observations for each dyad. For 
the cross-correlation approach and numerous methods to fol-
low, a researcher can generate lagged variables from the origi-
nal variable set by deleting the first row of observations and 
inserting those columns to the original set. This can be done 
automatically with some software programs, such as SPSS. 
Then correlation coefficients can be estimated. A major draw-
back of correlational approaches is that they do not control for 
the influence of other variables or prior time points.

Vector Autoregression.  Vector autoregression (VAR) models 
estimate directed (i.e., not correlational), lagged relations 
among the dyad-level variables (depicted in Figure 1B). For 
instance, in daily diary data the lag may be on the order of 
days, with predictions from the day before being a lag of 1. 
In the context of dyads, VARs indicate the degree to which 
individuals’ set of variables predict both their own and their 
partner’s values at a later time. Whereas correlation-based 
approaches discussed previously do not indicate direction-
ality or take into account the influence of other variables, 
VARs enable researchers to examine the relations among 
variables after controlling for other variables. The VAR 
models are expressed as follows:

Figure 1.  Diagram of four linear temporal process models at a lag of 1.
Note. “y#” is an arbitrary observed variable at time (t) or a lag of one (t − 1). Subscripts “H” and “W” indicate two different individuals in a given dyad. 
“η”s are latent variables. Please note all models could be extended for more variables or more lags. Please note that candidate relations are shown 
here for explanatory purposes and may not represent final estimated models.
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where, as before, yt  represents a vector of observed vari-
ables with h and w indicating the variables for husband and 
wife, respectively, in a given dyad i. The subscripts wh and 
hw indicate reciprocity much like in the description of cross-
correlation, with wh representing the wife’s observed value 
influencing the husband’s at later time points, and vice versa 
for hw. The matrix φ  indicates the beta weights (much like 
in a regular regression equation) for the degree to which the 
variables at a given time point ( yt ) are predicted by the vari-
ables up to a certain lag L ( yt L− ). Large φ  values for the 
relation between the one individual at t − 1with the other 
individual at t indicate that the first individual provides some 
predictive value for the second one (after controlling for the 
lagged influence the individual has on themselves). Values 
near zero would indicate a lack of association. The intercepts 
are denoted with υ . The researcher can either decide a priori 
how far back in time to include, or L can be selected empiri-
cally by including all lags until additional lags fail to improve 
the model. The errors ε are assumed to have a zero mean, be 
normally distributed, and uncorrelated over time (Shumway 
& Stoffer, 2006).

VARs are the foundational approach for methods to fol-
low, and while often used in other fields to examine how 
one party may influence another, they have not been applied 
to dyad-level data in psychology as frequently. However, 
one study used piecewise VAR models (equivalently called 
difference equations) to examine marital interactions during 
couples’ discussion of conflictual issues. By examining the 
patterns of VAR results, they identified five types of mar-
riages and were able to use these to significantly predict 
divorce (Gottman, Murray, Swanson, Tyson, & Swanson, 
2005).

Recommendations and limitations.  Most software pro-
grams used by social scientists have VAR capabilities. To 
name a few, SAS, SPSS, R, and Matlab all have time series 
options, and models can be estimated with SEM (structural 
equation modeling) software (Hamaker, Dolan, & Mole-
naar, 2002). VARs are readily implementable on data that 
are in the form of continuous scales. Measurements of 
behaviors, symptoms, or moods gathered in daily diary data 
may be optimal for this approach, as would most forms of 
psychophysiological data. Observational behavioral data 
can be used if the data are coded via a scale. A limitation of 
VARs is that they do not contain a measurement model. As 
such, any error in measurement is not taken into account.

State–Space Modeling.  State–space modeling (SSM) incor-
porates a measurement model to quantify latent constructs 
that then can be modeled from within a VAR framework. 
In this way, these models can more precisely model the 
constructs of interest in the case where measurement 
errors may be present or when the constructs are best con-
sidered a weighted combination of indicators (i.e., a latent 
variable). This is particularly helpful when researchers 
have numerous items on a questionnaire that relate to the 
same underlying construct. Like VARs, SSMs can be 
applied to psychophysiological, observational, or daily 
diary scales. The measurement equation relating the 
observed y matrix of p variables to the latent η variables is 
as follows:

y yh t i h h h t i h t i w t i, , , , , , , ,= + +τ η ζλ
	

(4)

yw t i w w w t i w t i, , , , , , .= + +τ η ζλ

	

(5)

As written here, the λ  loadings that relate the actors’ 
observed variables to the latent construct can differ across 
dyads, similar to the idiographic filter introduced in dynamic 
factor analysis literature (Nesselroade, Gerstorf, Hardy, & 
Ram, 2007). In practice they are often set to be equivalent 
for the individuals. The latent variables can then be used in 
the dynamic (also referred to as transition or structural) 
equations:

η υh t i h h h t i hw w t i h t i, , , , , , , , .= + + +− −φ η φ η ε1 1 	 (6)

η υw t i w w w t i wh h t i w t i, , , , , , , , .= + + +− −φ η φ η ε1 1 	 (7)

The matrices are written separately here for wives and 
husbands for explanatory purposes and to directly map 
onto the depiction in Figure 1C. As with the VAR, υ  indi-
cates the level, and φ  the matrices of lagged relation 
weights. Notation follows convention described for VAR 
above. Please note that by using the first-differenced vari-
ables (i.e., subtract previous time point from the present) 
the SSM model aligns with McArdle’s (2009) latent 
change score model, where change can predict change, 
but as of yet this has not been used in dyadic time series 
data.

SSM can be conducted at the dyad level as demonstrated 
by Song and Ferrer (2009) on a romantically dating dyad 
for whom 60 days of affect scores were collected. In Chow, 
Mattson, and Messinger (2014), SSM was used to investi-
gate mother–infant interactions on a sample where about 
half of the infants had an older sibling diagnosed with 
autism spectrum disorder. Using a group-based model they 
identified a lag of two best fit the data. From this model, 
they found that the infants’ affect did not have a large influ-
ence on mothers’ affect and vice-versa.
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Recommendations and Limitations.  SSM models can be 
fit using the SsfPack R package (Koopman, Shephard, & 
Doornik, 1999). State–space models offer the potential for 
much flexibility from a modeling framework beyond what 
was presented here. For instance, SSM models can accom-
modate time-varying relations by having parameters that 
change across time (Chow, Zu, Shifren, & Zhang, 2011) or 
identify categorical shifts in relations among variables (as 
in regime-switching models; Hamaker & Grasman, 2012). 
SSMs are also ideal when the researcher would like to 
include multiple measurements of the same construct, such 
as numerous items on a scale or behavioral reports from 
different sources.

Unified SEM.  The unified SEM (uSEM, also referred to as 
structural VAR; Chen et al., 2011) incorporates contempo-
raneous effects into state–space and VAR models (see Fig-
ure 1D). As the name may suggest, uSEMs estimate effects 
from within the SEM framework (Kim, Zhu, Chang, 
Bentler, & Ernst, 2007). The ideal data for the uSEM 
approach is the same as that for VAR and state–space mod-
els. uSEMs can model either observed variables or latent 
(i.e., unobserved) variables from a dynamic factor analytic 
perspective (Molenaar, 1985). The measurement equation 
can be written identically as that for SSM (Equations 4 and 
5).

The addition of contemporaneous effects can clearly be 
seen by adding the variables at time:
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where the parameters described in VAR and dynamic state–
space equations above are the same. The important addition 
that differentiates uSEMs is the A matrix, which contains 
contemporaneous effects. These effects indicate the extent 
to which values of another variable instantaneously relate to 
a given variable after controlling for lagged effects (but 
variables are not allowed to predict themselves contempo-
raneously). As with the VAR and SSM, the researcher can 
either decide a priori how many lags to include, or L can be 
selected empirically.

One study has used uSEM to better understand gendered 
social behaviors (Beltz, Beekman, Molenaar, & Buss, 
2013). Coding behaviors in 10-second intervals, the 
researchers examined sex differences in sociotemporal 

dynamics of play behavior in same-sex dyads. The results 
supported hypothetical differences in play between the gen-
ders: Girls’ levels of positive affect were dependent on their 
peers’ prior positive affect more so than boys’, whereas for 
boys, the current level of vigor in activity was predicted by 
their peers’ current levels of activity.

Recommendations and limitations.  Unified SEMs can be 
estimated via either the vars (Pfaff, 2008) or gimme (Lane, 
Gates, & Molenaar, 2015) R packages and can also be con-
ducted on observed variables (see Gates, Molenaar, Hill-
ary, & Slobounov 2011). uSEMs are particularly useful 
when the researcher suspects that contemporaneous rela-
tions exist in the data or that the sampling rate may be too 
large to identify effects using solely the lags. Limitations 
for uSEMs are similar to some of those seen in correla-
tional and VAR analysis. Additionally, estimation via SSM 
yields more precise values for the measurement parameters 
(Chow, Ho, Hamaker, & Dolan, 2010).

Hidden Markov Models.  Hidden Markov models (HMMs) 
are similar to some of the previously discussed models in 
that they can have latent states and they model the temporal 
relations among these states. However, unlike traditional 
SSM, the latent states in HMMs and the relations among 
them are not continuous. HMMs estimate the discrete prob-
ability of going from one state (often defined as the pres-
ence of a set of behaviors) to another. Hence, HMMs are 
immediately well suited for categorical data.

Patterns of transitions between states in HMM use only 
information from the previous state. Thus HMMs have a lag of 
1. There are N distinct states that in the context of dyadic inter-
action represent the state of the dyad as a whole. Hence, unlike 
the prior models where one individual’s behavior can be mod-
eled as predicting another individual’s, HMMs describe how 
the two individuals in the dyad are relating at a given point in 
time as well as the probability of staying in that state or going to 
a different state. The measurement component is as follows:

b k Pr v Sj k j( ) = [ | ],
	 (10)

which indicates the probability of a given categorical obser-
vation v

k
 (e.g., smiling) occurring while in state Sj. The tran-

sition probability aij of transitioning from state S
i
 to state S

j
 

is given by the following:

aij t j t iPr q S q S= = =−[ | ],1 	 (11)

which can be considered a dynamic equation where qt is the 
state the dyad is in at time t and qt−1 is the previous state the 
dyad experienced (adapted from Rabiner & Juang, 1986). 
Note that the probability of staying in the same state tends 
to be high in these models.

Variants of HMMs have been used in a number of con-
texts to examine mother–infant interactions. Rovine, 
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Sinclair, and Stifter (2010) introduced the utility of using 
HMM for dyad-specific inquiries. A later study used the 
observed states (i.e., Markov modeling) and found that the 
transition from a fussing state in the infants was more likely 
to be followed by feeding in mothers who were heavier, and 
an intervention decreased this likelihood (Anzman-Frasca 
et al., 2013). Another study found that mothers’ soothing 
behaviors changed from 2 to 6 months, with mothers using 
more sophisticated auditory soothing methods (Stifter & 
Rovine, 2015).

Recommendations and limitations.  The R package dep-
mix is a readily available and well-maintained resource for 
conducting HMM analysis (Visser, 2014). HMMs are ideal 
when the underlying research question relates to the “state” 
the dyad is in. This approach will identify how behaviors in 
one of the partners cohere with behaviors in another part-
ner to arrive at one of the states that the dyad as a whole 
is experiencing simultaneously. One potential drawback is 
that it can be difficult to decide how many states to include.

State–Space Grids.  Research questions sometimes require 
descriptive measurements (as opposed to models) that 

capture dyads’ categorical behaviors. As with the above 
state–space approaches, one can think of the dyads’ behav-
iors as generating a state that they are mutually in. A freely 
distributed program for state–space grids (SSGs), Grid-
Ware, provides measures describing interaction patterns 
and a two-dimensional visualization (Lamey, Hollenstein, 
Lewis, & Granic, 2004). Figure 2 depicts the visualization 
grid where the x-axis contains behaviors of a mother with 
the y-axis containing behaviors of her infant. The circle 
sizes indicate the amount of time spent in a state with the 
arrows indicating to which state they transitioned next. One 
can immediately see, for instance, that the largest circle 
occurs where the mother is touching the infant (but not 
holding) and the infant is distracted and vocal.

GridWare arrives at descriptive measures such as how 
long the dyads are in a given state, which state they frequent 
the most, and how often they transition in and out of states. 
These measures can provide insights above and beyond tra-
ditional or aggregated measures (Moore et al., 2013). Most 
studies of dyadic interaction that use SSGs have focused on 
flexibility, which can be quantified in the three ways using 
GridWare: stability (average time in each state), fluctuation 
(number of transitions), and dispersion (total number of 

Figure 2.  Two-dimensional depiction of mother (x-axis) and infant (y-axis) behaviors across time obtained using GridWare software.
Note. Lines and arrows indicate transition trajectory from one state to another; circle size indicates length of time in one state for each visit; darkened 
circle represents the starting state.
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states experienced). These measures have been used to 
demonstrate that rigidity of emotional states for parent–
child dyads may be maladaptive in childhood and adoles-
cence (e.g., Lunkenheimer, Olson, Hollenstein, Sameroff, 
& Winter, 2011; Van der Giessen, Branje, Frijns, & Meeus, 
2013), yet flexibility during mother–infant interactions may 
not relate to secure attachment as hypothesized (Guo, Leu, 
Barnard, Thompson, & Spieker, 2015).

Recommendations and limitations.  SSGs are particularly 
ideal for observationally coded behaviors that indicate the 
presence or absence of a given behavior during a dyadic 
interaction. Continuous variables cannot be included. 
While less mathematically complicated than some other 
approaches, this approach requires that much thought goes 
into generation of the data matrix.

Recurrence Quantification Analysis.  Much like HMMs and 
SSGs, recurrence quantification analysis (RQA) has been 
predominantly applied in the psychological sciences on 
time series containing nominal data (e.g., observational 
coding). With RQA, researchers can identify the rigidity of 
the dyad as well as the temporal ordering of behaviors in a 
number of ways (Zbilut & Webber, 1992). At its simplest, 
RQA arrives at a “recurrence rate,” or the overall probabil-
ity that states will reoccur. RQA also quantifies the length of 
time between states as well as the time spent in each state 
(much like stability above). Cross-RQA, much like cross-
correlation discussed above, quantifies the relation between 
one actor’s behavior at a given time point with the other 
actor’s at an earlier time point. Another interesting measure, 
“trapping time,” indicates the average time spent in each 
state (Marwan, Kurths, & Saparin, 2007). Finally, RQA 
provides a measure of entropy for the time series as a to 
measure stability. Low entropy indicates highly predictable 
(stable) patterns with high entropy indicating behavioral 
patterns that require more information to predict.

These measures have been used to study a wide range of 
dyadic interaction. For example, entropy has been used to 
identify points of change in a longitudinal study examining 
the relation between parent–child interactions and treatment 
efficacy in aggressive children (Lichtwarck-Aschoff, 
Hasselman, Cox, Pepler, & Granic, 2012). Cross-RQA has 
been used to examine language development in children 
(e.g., Dale & Spivey, 2006), coordination of eye move-
ments in viewing tasks (Richardson & Dale, 2005), and 
concordance of posture during conversation (Shockley, 
Santana, & Fowler, 2003).

Recommendations and limitations.  RQA can be imple-
mented using the Matlab toolbox “RQA” or the R pack-
age “CRQA” (Coco & Dale, 2014). RQA has been used 
predominantly on categorical or nominal behavioral codes. 
One advantage that RQA has over other techniques is that 

it can be useful even for short or nonstationary time series. 
Some of the measures, such as entropy, may not be familiar 
to psychology researchers, and like SSG, the burden for the 
researcher is to be particularly mindful when preparing the 
data to ensure meaningful states.

Differential Equations.  Differential equations models have 
been frequently used to study dynamic dyadic processes. 
These models are similar to VAR models in many ways, but 
they aim to predict changes of a system over time. Hence, 
the derivatives, or rate of change, are often specified as the 
dependent variables. For example, the following bivariate 
differential equations model can be used to represent dyadic 
interactions:

dy

dt
b y c yh

h w= + +a1 1 1 . 	 (12)

dy

dt
b y c yw

w h= + +a2 2 2 .
	

(13)

Here, 
dy

dt
h

 and 
dy

dt
w

are rates of change in y
h
 and y

w
, 

respectively. The parameters a1  and a2 represent the two 
variables’ equilibrium. The parameters b1  and b2 represent 
the extent to which y

h
 and y

w
 change depending on them-

selves, and c1  and c2 indicate the extent to which y
h
 and y

w
 

change depending on each other. More complicated 
dynamic processes can be represented by alternative differ-
ential equations. For example, changes of a partner may be 
dependent not on the level of the partner but on the congru-
ence between the two by using the difference score between 
y

h
 and y

w
 as a predictor (Felmlee, 2006; Felmlee & 

Greenberg, 1999).
Ferrer and Steele (2012) fitted four theoretically driven 

differential equation models to daily data from heterosexual 
couples and found that couples meaningfully differed in the 
best model describing their affective interactions. Other 
examples are found in Boker and Laurenceau (2006), 
Butner, Amazeen, and Mulvey, (2005), Ferrer and Helm 
(2013), and Ram, Shiyko, Lunkenheimer, Doerksen, and 
Conroy (2014).

Recommendations and limitations.  Differential equations 
can be helpful when the researcher wishes to identify when 
one actor influences change in the other actor at a later time. 
SAS PROC MODEL is a flexible procedure for fitting these 
models, but selection of an appropriate functional form can 
be challenging if no strong theory exists, and estimation can 
be difficult.

Frequency Domain Analysis.  Frequency domain analysis, also 
known as spectral analysis, includes a family of methods 
for examining cyclical patterns in data. In frequency analy-
sis, time series data are decomposed into sinusoidal waves 
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with different frequencies. For each sinusoidal wave, its 
power reflects the amount of variance it accounts for in the 
data. Many physiological signals contain frequency bands 
that are associated with well-established clinical interpreta-
tions. For example, respiratory sinus arrhythmia (RSA), a 
measure of parasympathetic influence on heart rate, is typi-
cally obtained by computing the power of heart rate in the 
respiratory frequency band (0.12-0.40 Hz in adults). In 
some cases the power distribution of a signal is not known, 
and researchers may use frequency analysis to explore the 
dominant frequency bands in the process of interest. For 
instance, if a time series of daily diary data has a peak in the 
power estimate corresponding to 7 days, then a weekly 
effect has been discovered.

In the frequency domain a number of statistics can be 
obtained to study dyadic processes. For instance, the coher-
ence is a frequency domain measure equivalent to a correla-
tion. A high coherence at a particular frequency band 
indicates that two signals are both characterized by that fre-
quency (Figure 3A). It can be used to examine whether two 
people show the same rhythmic patterns in social interac-
tions, their psychophysiological measures, or any other data 
being used. Individuals with different dominant frequencies 
or cycles (Figure 3B) would have low coherence. If the 
individuals are indeed characterized by high coherence, 
then one can examine lead–lag relations in the dominant 
frequencies using these methods. This phase difference as 
depicted in Figure 3C indicates that the husband leads the 
wife in the frequency of interest.

By first fitting a VAR model to time series data, and then 
transforming the VAR model into the frequency domain, 

one could obtain more reliable estimates of dynamic inter-
actions (Schlögl, 2007). This transformation yields a num-
ber of statistics assessing causal lagged relations, such as 
the partial directed coherence (PDC; Baccalá & Sameshima, 
2001) and its extended version, generalized partial directed 
coherence (gPDC; Baccalá & de Medicina, 2007). Like the 
cross-lagged coefficients in VAR, these estimates assess the 
degree to which one partner is influenced by the other part-
ner’s values at previous time points, controlling for autocor-
relations. Unlike VAR, these effects are represented in 
terms of periodicities.

Gottman and Ringland (1981) are one of the first to use 
frequency analysis to examine dyadic interactions. They 
examined coherence and phase difference in changes of 
attentional and affective involvement in three mother–
infant dyads through videotaped episodes of face-to-face 
interactions. Following this study, two groups used coher-
ence and phase to examine synchrony in mother–infant 
interactions. Applying these descriptive measures to group-
level analysis, they found significant differences between 
term and preterm babies (Lester, Hoffman, & Brazelton, 
1985), and between depressed and nondepressed mothers 
(Field, Healy, Goldstein, & Guthertz, 1990). In a recent 
article, Liu and Molenaar (2016) use PDC and gPDC to 
examine interaction patterns in skin conductance responses 
between an autistic child and his therapist during 
psychotherapy.

Recommendations and limitations.  Descriptive statistics in 
the frequency domain, such as coherence and phase, can 
be obtained in standard statistical packages including SAS, 

Figure 3.  Depiction of types of relations that can be quantified using coherence and directed coherence analysis.
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Matlab, and R. Model-based statistics, such as PDC and 
gPDC, can be conducted using publicly available Matlab 
tool boxes (e.g., eMVAR or BioSig). One drawback of fre-
quency domain statistics is that their interpretations are not 
as straightforward as the time domain models when used 
with data without obvious cyclical patterns.

Group-Level Methods

Clinicians may wish to conduct group-level analysis instead 
of (or in addition to) conducting dyad-level analysis. 
Models that describe the group may be used to arrive at 
inferences that typify their clientele base or can generalize 
to the population from which they participants are drawn. In 
this way, group-level models may aid in understanding 
what is a “typical” temporal process for a given situation. 
All the models described above for dyad-level analysis can 
be conducted to arrive at one group model by vertically 
concatenating dyads’ multivariate time series. However, for 
reliable and useful models to be obtained concatenating 
requires that the dyads all have identical processes, an 
assumption that often is not met (see Molenaar, 2004). The 
approaches below allow for group-level models that do not 
assume homogeneity.

Multilevel Models.  Multilevel models are also called hierar-
chical linear models (HLMs; Raudenbush & Bryk, 2002) 
and mixed effects models (Laird & Ware, 1982). They pro-
vide two types of estimates: fixed effects, which represent 
the average trends in the sample, having identical values 
across dyads; and random effects, which can vary across 
dyads and are assumed to be normally distributed in the 
sample. With the two effect types, multilevel models allow 
for generalizable inferences as well as insight into differ-
ences across dyads.

The number of levels in multilevel models depends on 
the nested structure in the data. With dyadic data it is com-
mon to use a two-level model, where repeated measures are 
nested within the dyad and a between-dyad level captures 
differences across dyads. The multilevel modeling frame-
work is highly flexible and allows researchers to quantify 
interpersonal interactions in various ways. For example, the 
multilevel growth curve model can be used to represent the 
trajectories of the outcome variables as functions of time, 
such as polynomial and even nonlinear functions (e.g., 
exponential). Depending on the function form, the covari-
ance between random components captures similarity in 
different aspects of the overall shape of their data. In some 
cases, however, researchers may be more interested in inter-
personal dynamics at a finer time scale, rather than the over-
all shape. For example, if it is hypothesized that husband 
and wife have similar values from one time point to the 
next, the following model can be used:

Level 1 within-dyad level : Level 2 between-family level( ) ( )
HH WW WM u

u
it i i it it i i i

i i

= + + = + +

= +

π π ε π β β

π β
0 1 0 00 01 0

1 10 1
	

(14)

In this model, Hit  represents the value from husband in 
dyad i at time t, WWit represents the deviation of the wife’s 
value from her person-mean at time t, and WMi represents 
her person-mean (i.e., W WM WWit i it= + ) over time. 
Hence,π0i is the estimated person-mean for the husband in 
dyad i, and π1i represents the degree of synchrony for dyad 
i. A positive π1i indicates that if the husband’s value at a 
given time point is higher than his average, the wife’s value 
at the same time point is also higher than her average. 
Notably, π1i can vary across dyads, enabling the testing of 
possible covariates. For example, if a relationship satisfac-
tion measure is hypothesized to influence the degree of syn-
chrony, it can be added as a Level-2 predictor of π1i.

This modeling framework can be easily extended to test 
for other mechanisms of interpersonal interactions. For 
instance, if it is hypothesized that one partner’s value at a 
particular time point predicts the other partner’s value at the 
following time point, a multilevel VAR model can be used. 
If the underlying dynamics of interaction can be represented 
by a set of differential equations, multilevel differential 
equations models can be tested.

Reed, Randall, Post, and Butler (2013) used multilevel 
models to examine positive and negative physiological 
linkage between romantic partners and the moderation 
effects of partner influences. They measured blood pres-
sure, interbeat interval, and skin conductance from 44 het-
erosexual couples, finding that couples who reported low 
partner influence in health behaviors showed negative link-
age in their blood pressure. Similarly, Liu, Rovine, Klein, 
and Almeida (2013) used multilevel models to examine 
synchrony in diurnal cortisol patterns, a physiological indi-
cator of stress, between spouses with daily diary data. They 
found that spouses synchronize their diurnal cortisol slope, 
such that on days when one experiences a faster decline in 
diurnal cortisol than usual, the spouse also experiences a 
faster decline. In addition, positive synchrony in cortisol 
awaking response was observed only in couples reporting 
high levels of marital strain and disagreement.

Recommendations and limitations.  Multilevel model-
ing can be carried out in a variety of statistical programs. 
Sample code for SAS, SPSS, and Mplus can be found in 
Bolger and Laurenceau (2013). Although multilevel models 
can accommodate heterogeneity among dyads by estimat-
ing random effects, they are constrained in the sense that all 
subjects have to follow the same fixed-effects model. This 
may not be ideal if the process differs across dyads.

Group Iterative Multiple Model Estimation.  While multilevel 
models arrive at dyad-level estimates for a constrained set 
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of relations, group iterative multiple model estimation 
(GIMME) arrives at patterns of effects that exist for the 
group as well as patterns that are unique for the dyad (Gates 
& Molenaar, 2012). In this way, GIMME attends directly to 
the issue of heterogeneity in temporal processes across. 
GIMME can be used on continuous data such psychophysi-
ological and daily diary data. Importantly, GIMME does not 
require that homogeneity among individuals exists in terms 
of (1) the structure describing their models or (2) the mag-
nitude of the effects.

GIMME begins by arriving at a pattern of temporal 
effects that describes the sample. These are then used as a 
prior for dyad-level paths, an approach that has been shown 
to greatly improve the ability to recover the presence of 
temporal effects describing the relations among variables 
for the dyad-level time series (Gates & Molenaar, 2012). 
Having arrived at patterns of temporal effects that exist at 
the sample and dyad levels, GIMME estimates the effects 
for each i dyad. The uSEM model (Equations 7 and 8) can 
be extended:

y A A y A A yh t i h i h i
g

h t i hw i hw i
g

w t i

h i h i
g

, , , , , , , , , ,

, ,

= +( ) + +( )
+ +(φ φ )) + +( ) +− −y yh t i hw i hw i

g
w t i h t i, , , , , , , , ,1 1φ φ ε 	

(15)

y A A y A A yw t i w i w i
g

w t i wh i wh i
g

w t i

w i w i
g

, , , , , , , , , ,

, ,

= +( ) + +( )
+ +(φ φ )) + +( ) +− −y yw t i wh i wh i

g
h t i w t i, , , , , , , , ,1 1φ φ ε 	

(16)

where subscripts h and w indicates the husband and wife, 
respectively, for the i dyad, and superscript g denotes group-
level patterns of effects. Matrix notation is the same as 
described for uSEM above. Note that all estimates are at the 
dyad level.

GIMME has predominantly been used to look at syn-
chrony in brain regions (e.g., Yang, Gates, Molenaar, & Li, 
2015). However, increasingly researchers are using this 
approach to look temporal patterns of individuals across 
time. For example, the social interaction study noted above 

(Beltz et al., 2013) conducted analysis for each individual 
separately, and the same data could be used in GIMME to 
enable identification of group-level effects.

Recommendations and limitations.  GIMME is freely avail-
able for download as an R package (Lane et al., 2015) and 
Matlab toolbox (Gates & Molenaar, 2014). As with cross-
correlation, VAR, uSEM, and SSM, at this time GIMME 
is currently best for data that do not have cyclical relations 
such as weekend effects that may surface in substance use 
behaviors. Providing that they are not constructs of interest, 
cyclical relations can be regressed out prior to analysis.

Dynamical Correlation.  Dynamical correlation is a correla-
tion index for quantifying the similarity between two sets of 
curves (Dubin & Müller, 2005). It was developed in the 
framework of functional data analysis, an emerging field in 
statistics to analyze data in the form of a curve or function. 
If we conceptualize a psychological process of interest as a 
continuous smooth function of time, longitudinal data can 
be viewed as observations taken from this function at dis-
crete time points, possibly contaminated by measurement 
errors. In many cases, researchers are interested in studying 
the underlying psychological process, not observations at 
discrete time points. The goal of functional data analysis is 
thus to obtain statistics describing relations among underly-
ing functions, which can be recovered if measurements are 
dense.

Given two intensively measured variables from a sample 
of dyads, the covariation between their underlying func-
tions can be quantified by dynamical correlation. To some 
degree, dynamical correlation is a proxy of Pearson correla-
tion in functional data analysis. It is a standardized correla-
tion measure within the range of [−1, 1]. In Pearson 
correlation, observations first need to be centered by sub-
tracting the sample mean from each observation. Similarly, 
in dynamical correlation, the curves need to be centered by 
subtracting the sample mean curve from each curve. Then, 

Table 2.  Methods for Group-Level Modeling.

Method Research questions answered Recommendations and limitations Implementation

Multi-level What is the average magnitude 
for which dyads covary? How do 
individual dyads differ from this?

All dyads must conform to the 
same model; excellent for 
continuous data

Standard statistics software

GIMME What are the best aggregate- and 
individual-level models for how 
dyads covary? What are the 
dyad-level estimates?

Individual-level models may be 
driven by noise; excellent for 
continuous data

R package: gimme (Lane, Gates, & 
Molenaar, 2015)

GIMME Matlab toolbox (Gates & 
Molenaar, 2014)

Dynamic corr. Do dyads tend to covary across 
time according to a shared a 
nonlinear trajectory?

Group-level statistic that does not 
give insight into individual dyads; 
excellent for continuous data

R package: dynCorr (Dubin, Qiao, & 
Müeller, 2012)

R program (Liu, Zhou, Palumbo, & 
Wang, 2016)

Note. Multi-level = multilevel modeling; GIMME = group iterative multiple model estimation; Dynamic corr. = dynamic correlation.
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a correlation index is created to indicate the similarity 
between the centered curves. In this regard, dynamical cor-
relation is also conceptually similar to the multilevel growth 
curve modeling approach, which quantifies synchrony with 
a covariance between random effects (i.e., deviations from 
the sample means). However, dynamical correlation is more 
flexible in that it does not require a functional form to be 
specified. Hence, it is convenient when modeling processes 
that do not show a regular, universal change trajectory. In 
addition, it does not place any assumption on the distribu-
tion of the centered curves, unlike multilevel models that 
require normality of random effects. As a result, dynamical 
correlation can be easily estimated and tested without any 
model convergence problem.

Liu, Zhou, Palumbo, and Wang (2016) illustrate the use 
of dynamical correlation in studying interpersonal physio-
logical synchrony. Skin conductance was measured from 
heterosexual couples during two experimental conditions: 
(1) partners were seated back-to-back silently and (2) part-
ners were seated face-to-face silently. Dynamical correla-
tion between partners’ skin conductance data was significant 
only in the face-to-face condition, which suggests that non-
verbal conditions were sufficient for physiological syn-
chrony to develop but only when visual cues were present.

Recommendations and limitations.  The R package dyn-
Corr can be used to conduct dynamic correlation analysis 
(Dubin, Qiao, & Müeller, 2012) and an R program created 
for social scientists can also be obtained from Liu et al. 
(2016). Unlike multilevel models and GIMME, dynamical 
correlation is a group-level statistic and does not provide 
dyad-level estimates. Hence, it is not suitable for studying 
individual differences in dyadic interactions.

Discussion

Studying how partners in dyads relate to each other across 
time from within a dynamic systems framework has already 
led to a wealth of insights that would not have been revealed 
in traditional cross-sectional research. Some guiding prin-
ciples when selecting the appropriate modeling framework 
relate to the qualities of the data and the hypotheses. If one 
were interested in linear aspects of the data, for instance, 
how a partner’s mood on one day influences a partner’s 
mood on another day, then the class of models depicted in 
Figure 1 would be appropriate (i.e., cross-correlation, VAR, 
SSM, and unified SEM). For examination of specific peri-
odic or cyclical properties of their data, such as weekly pat-
terns or aspects of heart rate (see Figure 3), frequency 
domain analysis would be appropriate. Specific approaches, 
such as HMM, can be conducted when the researcher 
wishes to identify when a dyad shifts into a different inter-
active state, and GridWare or RQA can be used to quantify 
the flexibility and other measures of shared dyadic 

interaction. Of the methods discussed here, HMMs, RQAs, 
GridWare, and SSM are immediately well-suited for non-
stationary data, or when the relations among variables 
changes over time.

New terminology to describe dyadic relations has 
emerged concomitant with the increased use of these data 
types and emerging methods. For instance, psychophysio-
logical literature has used the terms synchrony and linkage to 
describe shared covariation in dyads (Levenson & Gottman, 
1983), whereas panel longitudinal models sometimes use 
the term interdependence to describe relations between indi-
viduals (Cook & Kenny, 2005). Coregulation (Butler & 
Randall, 2013) and compensatory (Gates et al., 2015) have 
been used to define dyadic relationships that contribute work 
together to return to emotional stability. Reed et al. (2013) 
offer a unified set of terms to describe different types of 
covariation, using “in-phase” to describe dyads that have a 
positive relations with each other and “anti-phase” to denote 
negative relations. As the use of these techniques increases, 
it is likely that more nuanced terms will become available. 
However, it is helpful to have general terms that are consis-
tent in usage in combination with these methods to help with 
comparisons of results and hypotheses across papers. The 
present article provides an overview of currently available 
methods that will likely be the foundation for methods that 
are developed as researchers continue to use and push the 
boundaries of traditional time series techniques to best 
answer their research questions of interest.
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